

Security Vulnerability Notice

SE-2012-01-IBM-2

[Security vulnerabilities in Java SE, Issues 62-68]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered 7 additional security issues in the latest version of IBM SDK,

Java Technology Edition software [1]. Most of them are related to unsafe use or

implementation of Java Reflection API. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

62 origin Class File parsing (IBM J9 Java VM)

cause no receiver binding for protected members of arbitrary classes

impact invocation of protected methods of arbitrary objects

type complete security bypass vulnerability

63 origin Class File parsing (IBM J9 Java VM)

cause interpretation of EnclosingMethod attribute

impact access to declared Method objects of arbitrary classes

type partial security bypass vulnerability

64 origin java.lang.MethodHandles.Lookup

cause no receiver binding for protected members of arbitrary classes

impact invocation of protected methods of arbitrary objects

type partial security bypass vulnerability

65 origin com.ibm.rmi.io.ValueHandlerImpl

cause unsafe implementation of deserialization functionality

impact access to arbitrary fields of Serializable classes

type partial security bypass vulnerability

66 origin java.lang.invoke.MethodType

cause unsafe deserialization of MethodType objects

impact mutable MethodType objects

type partial security bypass vulnerability

67 origin com.ibm.CORBA.iiop.ClientDelegate

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside AccessController's doPrivileged

block

type complete security bypass vulnerability

68 origin com.ibm.rmi.io.ObjectStreamClass

cause insecure implementation of reflective Field access

impact privileged access to arbitrary fields of Serializable classes

type complete security bypass vulnerability

Below, we provide additional comments with respect to the issues presented in the above

table:

 Issues 62 and Issue 63 are similar. They both allow to obtain access to protected

members of system classes such as Class Loaders. Issue 62 allows to obtain

MethodHandle objects which are not bound to the MethodHandles.Lookup class

instance that produced them. Issue 63 provides access to declared Method objects

of system classes, which can be further turned into unbound instances of

MethodHandle class with the use of unreflect call of the

MethodHandles.Lookup class (Issue 64).

 Issues 65 and 66, when combined together can be used to break immutability of a

MethodType class. Issue 65 allows to obtain access to arbitrary fields of serializable

classes. Issue 66 exploits the fact that a serialization process of MethodType class

operates on real instance field values, rather than on their copies. In our Proof of

Concept code, access to arguments array of a given MethodType instance is

abused to create a specially crafted type confusion condition with the use of static

getter MethodHandle objects.

 Issues 67 is yet another instance of insecure use of invoke method of

java.lang.reflect.Method class. It is exploited to successfully call

setSecurityManager method of java.lang.System class.

 Issues 68 allows to obtain access to private Field objects of Serializable

classes. In our Proof of Concept code, this condition is abused to set value of a

protectionDomain field of java.lang.Class objects corresponding to user

loaded classes. This is sufficient to mark them as fully privileged and to successfully

invoke security sensitive methods inside AccessController's doPrivileged

block.

Additionally to the above, we would like to inform you that several issues reported to IBM in
Sep 2012 had not been fixed correctly. This in particular includes Issues 35, 36, 37 and 49
as illustrated by a sample fix for Issue 37:

SecurityManager securitymanager = System.getSecurityManager();

If (securitymanager != null && this_obj != null) {

Class class2 = (this_obj instanceof Class) ?

(Class)this_obj : this_obj.getClass();

String package = JavaUtil.getPackageName(class2.getName());

securitymanager.checkPackageAccess(package);

}

Object res = method.invoke(this_obj, args);

If (securitymanager != null && res != null) {

Class res_class = (res instanceof Class) ?

 (Class)res : res.getClass();

String package = JavaUtil.getPackageName(res_class.getName());

securitymanager.checkPackageAccess(package);

}

The above fix only tries to detect the use of a restricted Class object as either an argument

or a result of the invoke call. This fix doesn’t take into account the possibility to load Class

object with the use of a class array signature. It doesn’t guard against the invocation of
other security sensitive methods either. This in particular includes new Reflection API calls
that rely on a caller class for security purposes.

Fix for issue 49 does not sufficiently protect against access to privileged

ByteCodeArraysClassLoader class as subclasses of this class are still allowed

(protected static access). Additionally, defineClass method does not use

ProtectionDomain of ByteCodeArraysClassLoader subclass, but a privileged

domain of a system class. That’s due to the fact that this is

ByteCodeArraysClassLoader class, not its user provided subclass that gets instantiated

in newByteCodeArraysClassLoader method.

Attached to this report, there are 9 Proof of Concept codes that illustrate all of the reported

issues (4 broken fixes and 5 new ones). Each of them demonstrates a complete compromise

of a Java security sandbox. They have been successfully tested in a 32-bit Linux OS

environment and with the following version of IBM SDK:

 IBM SDK, Java Technology Edition, Version 7.0 SR4 FP1 for Linux (32-bit x86), build

pxi3270sr4fp1-20130325_01(SR4 FP1)

REFERENCES

[1] IBM developer kits ,

http://www.ibm.com/developerworks/java/jdk/

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

