

Security Vulnerability Notice

SE-2012-01-IBM-5

[Security vulnerabilities in Java SE, Issue 70#2]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered that Issue 70 [1] reported to IBM in Oct 2013 was
improperly fixed. According to the company, the vulnerability was addressed in a release of
IBM Java from Nov 2013. Below, technical details of the flawed fix implementation are
provided.

Issue 70 had its origin in com.ibm.rmi.io.SunSerializableFactory class. It was

caused by insecure implementation of a deserialization process of arbitrary classes. More
specifically, during this process, a constructor of the first non-serializable superclass was

called inside AccessController's doPrivileged block. This condition could be

successfully exploited to create custom and fully functional java.lang.ClassLoader

objects [2]. As a result, a complete Java security sandbox escape could be gained.

IBM addressed Issue 70 (CVE-2013-5456) by restricting access to classes from the

com.ibm.rmi.io package1. As a result, the exploit scenario illustrated by our Proof of

Concept Code published in Nov 20132 was closed. The vulnerable functionality could be
however still accessed through some other code paths as illustrated on Fig. 1.

Fig. 1 A code path illustrating Issue 70 patch bypass.

This in particular includes the code path originating in a restricted

com.ibm.rmi.io.ValueHandlerPool.ValueHandlerSingleton class, which

implements javax.rmi.CORBA.ValueHandler interface. The instance of this class could

be obtained by calling createValueHandler method of

com.ibm.CORBA.iiop.UtilDelegateImpl class. A call to readValue method invoked

on the acquired ValueHandler interface instance can directly lead to the invocation of a

vulnerable code sequence in com.ibm.rmi.io.SunSerializableFactory class (Issue

70 patch bypass).

Similarly to the broken fix for Issue 67 [3], the actual root cause of Issue 70 hasn't been
addressed at all. The constructor of the first non-serializable superclass was still called inside

AccessController's doPrivileged block. There were no security checks introduced

anywhere in the code. The patch primarily addressed the scenario illustrated by the Proof of
Concept code. It didn't take into account all code paths that could be used to reach the
vulnerable code sequence.

1
 this was accomplished by adding a com.ibm.rmi.io. string to the package.access definition in a

java.policy file.
2
 the scenario relying on a com.ibm.rmi.io.FastPathForCollocated class.

We implemented a Proof of Concept code that illustrates the impact of the broken fix
described above. It has been successfully tested in a 32-bit Linux OS environment and with
the following versions of IBM SDK:
 IBM SDK, Java Technology Edition, Version 7.1 for Linux (32-bit x86) released on 2016-

01-26 (build pxi3270_27sr3fp30-20160112_01(SR3 FP30))

 IBM SDK, Java Technology Edition, Version 8.0 for Linux (32-bit x86) released on 2016-

01-26 (build pxi3280sr2fp10-20160108_01(SR2 FP10))

We verified that, a complete Java security sandbox escape could be achieved with it.

REFERENCES

[1] SE-2012-01-IBM-3, Issues 70-71

http://www.security-explorations.com/materials/SE-2012-01-IBM-3.pdf

[2] Calendar Bug, (Slightly) Random Broken Thoughts, Sami Koivu

http://slightlyrandombrokenthoughts.blogspot.com/2008/12/calendar-

bug.html

[3] SE-2012-01-IBM-4, Issue 67#2

http://www.security-explorations.com/materials/SE-2012-01-IBM-4.pdf

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

