

Security Vulnerability Notice

SE-2012-01-ORACLE-10

[Security vulnerabilities in Java SE, Issues 54 and 55]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered two security vulnerabilities in Java SE Platform, Standard
Edition. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

54 origin java.lang.invoke.MethodHandles

cause The lack of security checks in a family of MethodHandle resolving methods

impact Access to protected members of arbitrary classes

type partial security bypass vulnerability

55 origin java.lang.invoke.MethodHandles

cause Insufficient type checks

impact The possibility to change the receiver object of arbitrary MethodHandle

object to the one of incompatible type

type partial security bypass vulnerability

Issue 54 stems from the fact that certain MethodHandle lookup methods

(resolveVirtual, resolveStatic, etc.) of java.lang.invoke.MethodHandles

class do not invoke the checkSecurityManager method during target class member

resolution process. This is clearly visible when arbitrary find and resolve methods

corresponding to a given MethodHandle lookup operation are compared as in the case of

findVirtual and resolveVirtual methods denoted below:

 public MethodHandle findVirtual(Class class1, String s, MethodType

methodtype) throws NoSuchMethodException, IllegalAccessException {

 MemberName membername = resolveOrFail(class1, s, methodtype, false);

 checkSecurityManager(class1, membername);  this call is missing below

 Class class2 = findBoundCallerClass(membername);

 return accessVirtual(class1, membername, class2);

 }

 private MethodHandle resolveVirtual(Class class1, String s, MethodType

methodtype) throws NoSuchMethodException, IllegalAccessException {

 MemberName membername = resolveOrFail(class1, s, methodtype, false);

 return accessVirtual(class1, membername, lookupClass);

 }

The above indicates the lack of a security check in resolveVirtual method. Although,

this method is private and is not invoked by any publicly available API method, it may be still

called by the Java VM during Class file parsing. This is in particular done whenever

MethodHandle entries are encountered in a target Class file’s ConstantPool.

For the purpose of our Proof of Concept code we generate a specially crafted MyCL class file

containing a MethodHandle reference to defineClass method of

java.lang.ClassLoader class in its ConstantPool. A dump of the resulting file is

provided below:

public class MyCL extends java.lang.ClassLoader

 SourceFile: "MyCL.java"

 minor version: 0

 major version: 51

 flags: ACC_PUBLIC, ACC_SUPER

Constant pool:

 #1 = Methodref #5.#16 // java/lang/ClassLoader."<init>":()V

 #2 = Methodref #5.#17 //

java/lang/ClassLoader.defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionD

omain;)Ljava/lang/Class;

 #3 = String #10 // dummy

 #4 = Class #18 // MyCL

 #5 = Class #19 // java/lang/ClassLoader

 #6 = Utf8 <init>

 #7 = Utf8 ()V

 #8 = Utf8 Code

 #9 = Utf8 LineNumberTable

 #10 = Utf8 dummy

 #11 = Utf8

(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)V

 #12 = Utf8 get_defineClass_mh

 #13 = Utf8 ()Ljava/lang/Object;

 #14 = Utf8 SourceFile

 #15 = Utf8 MyCL.java

 #16 = NameAndType #6:#7 // "<init>":()V

 #17 = NameAndType #20:#21 //

defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Clas

s;

 #18 = Utf8 MyCL

 #19 = Utf8 java/lang/ClassLoader

 #20 = Utf8 defineClass

 #21 = Utf8

(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class;

 #22 = MethodHandle #5:#2 // invokevirtual

java/lang/ClassLoader.defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionD

omain;)Ljava/lang/Class;

ConstantPool at index 22 contains the MethodHandle entry which will be successfully

resolved with the use of the resolveVirtual method during Class file parsing. This can

be accomplished due to the missing security checks in the abovementioned method.

Issue 55 relies on the possibility to bind the receiver of a target MethodHandle object to

the object instance of incompatible type. In case of the defineClass MethodHandle we

retrieve in our code, one can bind its receiver object to the instance of

java.lang.ClassLoader class, regardless of the fact that the receiver object type is

originally restricted to MyCL class:

MethodHandle(MyCL,String,byte[],int,int,ProtectionDomain)Class

Issues 54 and 55, when combined together can be used to successfully achieve a complete

JVM sandbox bypass in a target system. The ability to define custom classes with arbitrary

user provided Protection Domain is sufficient to achieve that. It is very probable that Issue

55 could be used alone to achieve a complete sandbox bypass via a type confusion attack.

That however requires more thorough investigation.

Attached to this report, there is a Proof of Concept code that illustrates the impact of both

vulnerabilities. It has been successfully tested in the environment of Java SE 7 Update 15

(JRE version 1.7.0_15-b03).

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

