

Security Vulnerability Notice

SE-2012-01-ORACLE-11

[Security vulnerabilities in Java SE, Issues 56-60]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered additional 5 security vulnerabilities in Java SE Platform,
Standard Edition. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

56 origin BytecodeVerifier

cause Bytecode verifier implementation (no real code flow tracking)

impact the possibility to create a valid class that does not call an inaccessible

constructor of its superclass

type partial security bypass vulnerability

57 origin java.lang.invoke.MethodHandles.Lookup

cause MemberName instance returned by resolveOrFail method points to a

reference class, instead of a declaring class

impact direct access to security sensitive MethodHandle objects

type partial security bypass vulnerability

58 origin java.lang.invoke.MethodHandleProxies

cause insufficient checks for MethodHandle object implementing given proxy class

functionality

impact the use of arbitrary (not type compatible) MethodHandle instance as a target

interface implementation

type partial security bypass vulnerability

59 origin sun.plugin.javascript.JSClassLoader

sun.plugin.javascript.JSInvoke

cause the possibility to issue limited Reflection API calls in a trampoline class loader

namespace

impact sun.* package access bypass (access to a restricted class and its methods)

type partial security bypass vulnerability

60 origin sun.plugin.javascript.JSInvoke

cause Arbitrary invoke method call done from a privileged class

impact the possibility to call doPrivileged method from a trusted caller frame

type partial security bypass vulnerability

Issue 56 allows to create a valid subclass of a given target class regardless of the fact that a

target class has inaccessible constructor (such as with a private access). Bytecode Verifier

used in Java SE 7 does not track code flows, but rather relies on type checks conducted at

specific code paths merging locations (targets of jumps, exception handlers, etc.). This

creates a possibility for abuse. Instead of triggering the exception resulting from an illegal

access to a given superclass constructor, one can create a specially crafted instance

initialization method that will successfully pass Bytecode Verfier checks regardless of the fact

that a superclass constructor is never called. We abuse the above by implementing a

specially crafted subclass of MethodHandleProxies class:

.class public MHP

.super java/lang/invoke/MethodHandleProxies

.method public <init>()V

.limit stack 2

.limit locals 2

l1:

 goto l1

 return

.end method

Regardless of the fact that MethodHandleProxies class has a private constructor and

that it is never called by its subclass, a valid MHP class can be created in a target Java VM.

Issue 57 allows to obtain direct access to certain security sensitive methods such as

asInterfaceInstance method of MethodHandleProxies class. In normal

circumstances, returned MethodHandle object for the abovementioned method should be

bound to the caller’s class. However, due to the fact that MemberName instance returned by

resolveOrFail method of MethodHandles.Lookup class points to a reference class,

instead of a declaring class, one can successfully bypass a check conducted by

isCallerSensitive method of MethodHandleNatives class. This can be

accomplished by issuing a method lookup operation (findStatic , etc.) on a subclass of a

given target class (MHP in our case), not a security sensitive class.

Issue 58 stems from the fact that it is possible to call an arbitrary, user provided

MethodHandle object as if it was a method handle of a different, fixed type. This can be

accomplished with the use of a specially crafted method handle instance which inserts

additional arguments, before calling the original method handle object. The type of the new

method handle drops the types for the inserted (bound) parameters from the original target

type, since the new method handle will no longer require those arguments to be supplied by

its callers. In our case, we convert a MethodHandle object of (SecurityManager)void

type to the ()void type by creating a new MethodHandle object that binds the

SecurityManager argument to the NULL value. This is accomplished by the means of

insertArguments method of java.lang.reflect.invoke.MethodHandles class.

The idea is to dispatch a call to setSecurityManager method of java.lang.System

class with the use of a MethodHandle of which type corresponds to run() method of

java.security.PrivilegedAction interface.

Issue 59 allows to get access to restricted sun.plugin.javascript.JSInvoke class

and its methods. This is caused by the fact that one can successfully issue Reflection API

calls on objects that belong to same class loader namespace (JSClassLoader in our case)

as the caller of Reflection API calls.

Issue 60 relies on the possibility to call doPrivileged method of

java.security.AccessController class with a privileged class set as a caller. In some

of our Proof of Concept codes reported to Oracle in 2012, we relied on a possibility to invoke

this method through the wrapper doPrivilegedWithCombiner call. At that time, we

treated this issue more as a feature than a security bug. However, due to the fact that

Oracle has addressed the abovementioned behavior and made it impossible to call a custom

(including those defined in a fully privileged Class Loader namespace) PrivilegedAction

objects via the wrapper doPrivilegedWithCombiner method call, we now treat it as a

bug. A successful call to the doPrivileged method can be now accomplished with the use

of the invoke method of sun.plugin.javascript.JSInvoke class. This method is

declared in a non-null, but fully privileged Class Loader namespace. This is sufficient for the

target call to succeed when invoked through the abovementioned invoke method.

Issues 56-60, when combined together can be used to successfully achieve a complete JVM

sandbox bypass in a target system. We abuse Issues 56 and 57 to get access to direct

MethodHandle object pointing to asInterfaceInstance method of

MethodHandleProxies class. We further abuse Issue 58 to create a specially crafted

PrivilegedAction object instance. This is a MethodHandleProxy implementing

java.security.PrivilegedAction interface. As an argument to the created proxy, we

provide a specially crafted instance corresponding to setSecurityManager method of

java.lang.System class. The idea is to have this method called with a prepended NULL

argument, in place of the expected MethodHandle object pointing the run() method of

the PrivilegedAction interface. Finally we abuse Issues 59 and 60 to get access to the

invoke method of sun.plugin.javascript.JSInvoke class through which a call to the

doPrivileged method is made with a specially crafted PrivilegedAction object

provided as an argument. As a result, a successful call to setSecurityManager method is

issued with a NULL argument, which switches off all Java VM security restrictions.

Attached to this report, there is a Proof of Concept code that illustrates the impact of all the

vulnerabilities described above. It has been successfully tested in the environment of Java

SE 7 Update 15 (JRE version 1.7.0_15-b03) and both Firefox and Google Chrome web

browsers. Please, note that due to the interaction occurring between JavaScript and Java,

the HTML file used for Applet launch may need to be modified to achieve same results in the

environment of other web browsers such as Internet Explorer, Safari, etc.

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

