

Security Vulnerability Notice

SE-2012-01-ORACLE-8

[Security vulnerabilities in Java SE, Issues 51 and 52]

DISLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered two security vulnerabilities in Java SE Platform, Standard
Edition. They are similar to the weaknesses discussed in our previous reports (problems with
Class Loader’s access and Reflection API). A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

51 origin com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl

cause the possibility to define user provided classes in a privileged (no package

access in loadClass method) class loader (TransletClassLoader)

impact arbitrary access to restricted classes

type partial security bypass vulnerability

52 origin com.sun.jmx.mbeanserver.Introspector

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of no-argument methods on user provided objects / classes

type partial security bypass vulnerability

Issue 51 relies on a definition of a custom instance of TemplatesImpl subclass that is

further instantiated with the use of serialization. Due to the complexity of the exploit

implementation (BlackBox class deserializes TemplatesImpl instance from the

ObjectInputStream defined in an array of bytes), we provide the source code for the

translet class that is defined by the instantiated object (Helper.java file from translet

directory).

The whole exploitation process takes place inside the constructor of the Helper class,

which is a user provided subclass of AbstractTranslet class. The bytecodes for the body

of this class are initialized at the time of deserialization of TemplatesImpl instance

(_bytecodes field). As an exploitation vector we again rely on DefiningClassLoader

class from sun.org.mozilla.javascript.internal package.

Issue 52 relies on the possibility to call no-argument methods on arbitrary objects or

classes. For the purpose of our Proof of Concept code we invoke getDeclaredMethods of

java.lang.Class class to get access to methods of restricted classes. This is

accomplished with the use of the following code sequence:

Introspector.elementFromComplex((Object)clazz,"declaredMethods")

Issues 51 and 52, when combined together can be used to successfully achieve a complete

JVM sandbox bypass in a target system. It might be possible that Issue 52 could be used

alone to achieve a complete sandbox bypass. That however requires more thorough

investigation.

Attached to this report, there is a Proof of Concept codes that illustrate the abovementioned

impact of both vulnerabilities. It has been successfully tested in the environment of Java SE

7 Update 11 (JRE version 1.7.0_11-b21).

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

