
 

 

 

 

 

 

 

Security Vulnerability Notice 

SE-2012-01-ORACLE-FIXED1 

[Security vulnerabilities in Java SE, Issues XX and YY] 

  

                                                           
1
 The vulnerabilities described in this report were fixed by Oracle on Feb 19, 2013. They were originally found 

in Feb 2012 and the decision was made to wait with their reporting  till the next Java SE CPU cycle release. As a 
result of a successful discovery by 3

rd
 party researchers, these vulnerabilities were never reported to Oracle by 

Security Explorations. 



 

 

DISCLAIMER 

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT 

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT 

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR 

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR 

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE 

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY 

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE 

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE. 

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE 

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION, 

USE, AND RESULTS OBTAINED FROM IT. 

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL 

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR 

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY, 

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL, 

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER 

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE 

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN 

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. 

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 

ERRORS. 

  



 

 

Security Explorations discovered two security vulnerabilities in Java SE Platform, Standard 
Edition. A table below, presents their technical summary: 
 
ISSUE 

# 

TECHNICAL DETAILS  

XX Origin java.lang.invoke.MethodHandleProxies 

Cause Insufficient checks for MethodHandle object implementing given proxy class 

functionality 

impact the possibility to implement and call MethodHandle proxy objects for arbitrary 
interfaces 

Type partial security bypass vulnerability 

YY Origin java.security.AccessController 

Cause doPrivileged method handle is bound to the privileged class 

impact the possibility to call doPrivileged method from a trusted caller frame 

Type partial security bypass vulnerability 

 

Issue XX stems from the fact that it is possible to call an arbitrary, user provided 

MethodHandle object through a target method handle of a fixed type. This can be 

accomplished with the use of a specially crafted method handle instance which inserts 

additional arguments, before calling the original method handle object. The type of the new 

method handle drops the types for the inserted (bound) parameters from the original target 

type, since the new method handle will no longer require those arguments to be supplied by 

its callers. In our case, we convert a MethodHandle object of (SecurityManager)void 

type to the ()void type by creating a new MethodHandle object that binds the 

SecurityManager argument to the NULL value. This is accomplished by the means of 

insertArguments method of java.lang.reflect.invoke.MethodHandles class.  

The idea is to dispatch a call to setSecurityManager method of java.lang.System 

class with the use of a MethodHandle of which type corresponds to run() method of 

java.security.PrivilegedAction interface. 

Issue YY relies on the possibility to call doPrivileged method of 

java.security.AccessController class with a privileged class set as a caller. In some 

of our Proof of Concept codes reported to Oracle in 2012, we relied on a possibility to invoke 

this method through the wrapper doPrivilegedWithCombiner call. At that time, we 

treated this issue more as a feature than a security bug. However, due to the fact that 

Oracle has addressed the abovementioned behavior and made it impossible to call a custom 

PrivilegedAction object via the wrapper doPrivilegedWithCombiner method call, 

we now treat it as a bug. A successful call to doPrivileged method can be now 

accomplished with the use of a new Reflection API and a MethodHandle object 

corresponding to the doPrivileged method. Although this MethodHandle object is bound 

to the non-null Class Loader namespace, the binding is done through a fully privileged 

trampoline class. This is sufficient for the target call to succeed. 

Issues XX and YY, when combined together can be used to successfully achieve a complete 

JVM sandbox bypass in a target system. 



 

 

Attached to this report, there is a Proof of Concept codes that illustrate the impact of both 

vulnerabilities. It has been successfully tested in the environment of Java SE 7 Update 13 

(JRE version 1.7.0_13-b20). 

 

About Security Explorations 

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability 

research. The company came to life in a result of a true passion of its founder for breaking 

security of things and analyzing software for security defects. Adam Gowdiak is the 

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with 

over 50 security issues uncovered in the Java technology over the recent years. He is also 

the hacking contest co-winner and the man who has put Microsoft Windows to its knees 

(vide MS03-026). He was also the first one to present successful and widespread attack 

against mobile Java platform in 2004. 


