

Security Vulnerability Notice

SE-2014-02-GOOGLE-3

[Google App Engine Java security sandbox bypasses, Issues 35-36]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered two additional security vulnerabilities in Google App Engine
for Java. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

35 origin java.io.ObjectInputStream class

cause latestUserDefinedLoader() method can denote a privileged loader

impact arbitrary loading of system classes (whitelisting escape)

type partial GAE security bypass vulnerability

36 origin com.google.apphosting.runtime.security.shared.RuntimeVerif

ier class

cause improper implementation of a isLoadableByUserClassLoader() security

check

impact reflective access to members of classes loaded by non-user Class Loaders

type partial GAE security bypass vulnerability

Issue 35 makes it possible to read a restricted Class object from an arbitrary input stream by

the means of a deserialization. In JRE, when a Class description is encountered in an

ObjectInputStream, its corresponding Class object is resolved with the use of the

resolveClass method illustrated below:

 protected Class resolveClass(ObjectStreamClass objectstreamclass)

 throws IOException, ClassNotFoundException {

 String s = objectstreamclass.getName();

 try {

 return Class.forName(s, false, latestUserDefinedLoader());

 } catch(ClassNotFoundException classnotfoundexception) {

 ...

 }

 }

The actual Class resolution is implemented with the use of a Class.forName() method

call with a third argument indicating a Class Loader to use during the process. The

latestUserDefinedLoader() method used by it returns the first user (non-null) Class

Loader encountered on the call stack.

In GAE, this implementation of a Class resolution can cause problems as multiple non-null

Class Loaders co-exist in the environment and some of them are more privileged than others

[1]. This in particular concerns PrivilegedClassLoader, which defines a namespace for

Java API Interception classes (mirror classes). It can also load all JRE classes without any

restrictions imposed by the JRE Class Whitelist.

Java Reflection API is also a subject to the API interception mechanism. As a result, all

invoke method calls of java.lang.reflect.Method class done from within the user

code get intercepted by the corresponding method of a mirror class. The target method gets

called only if it satisfies all security checks. What's however important here is that the call is

done from within the mirror class defined in a PrivilegedClassLoader namespace.

The above can be exploited to force the resolution of Class objects conducted by the

resolveClass method of java.io.ObjectInputStream class with the use of a

PrivilegedClassLoader instance. This can be accomplished by invoking the

readObject() method of java.io.ObjectInputStream through the Reflection API:

 int class_data[]={

 //serialized javax.management.loading.MLet Class

 0xac, 0xed, 0x00, 0x05, 0x76, 0x72, 0x00, 0x1d,

 0x6a, 0x61, 0x76, 0x61, 0x78, 0x2e, 0x6d, 0x61,

 0x6e, 0x61, 0x67, 0x65, 0x6d, 0x65, 0x6e, 0x74,

 0x2e, 0x6c, 0x6f, 0x61, 0x64, 0x69, 0x6e, 0x67,

 0x2e, 0x4d, 0x4c, 0x65, 0x74, 0x32, 0x76, 0x31,

 0xa3, 0x95, 0x2b, 0x57, 0x92, 0x0c, 0x00, 0x00,

 0x78, 0x70

 };

 byte stream[]=new byte[class_data.length];

 for(int i=0;i<class_data.length;i++) {

 stream[i]=(byte)class_data[i];

 }

 ByteArrayInputStream bais=new ByteArrayInputStream(stream);

 ObjectInputStream ois=new ObjectInputStream(bais);

 Class c=java.io.ObjectInputStream.class;

 Method read_object=c.getMethod("readObject",new Class[0]);

 Class mlet_clazz=(Class)read_object.invoke(ois,new Object[0]);

In our POC code, a reference to a restricted javax.management.loading.MLet Class

Loader class is obtained through a predefined ObjectInputStream data. This class can

be further used to create an arbitrary instance of an MLet object under attacker's control.

That's possible due to Issue 36 and the improper implementation of one of the security

checks imposed by a

com.google.apphosting.runtime.security.shared.RuntimeVerifier class

prior to conducting Reflection API operations:

 public static boolean isLoadableByUserClassLoader(Class klass) {

 ClassLoader userLoader = getUserClassLoader();

 try {

 userLoader.loadClass(klass.getName()); <---- SECURITY CHECK

 return true;

 } catch(ClassNotFoundException e) {

 return false;

 }

 }

The above check verifies whether a given class is visible to UserClassLoader. It is

successful if a class with the same name as an argument class can be loaded by it. In GAE,

a request to load a restricted class through the UserClassLoader is however in most

cases successful. Instead of returning a restricted class, a corresponding stub class is

loaded. This is also the case for the MLet class

(com.google.apphosting.runtime.security.shared.stub.javax.management

.loading.MLet stub class is loaded).

The ability to create arbitrary instances of the MLet class under attacker's control

constitutes a successful escape of a GAE Java security sandbox imposed by the Class
Sweeper and associated API Interjection and Interception mechanism in particular (escape

of UserClassLoader namespace). It can be easily exploited to gain a complete GAE Java

security sandbox escape. Issues 35 and 36 can be again combined with Issues 19 and 22 for
that purpose.

Attached to this report, there is a Proof of Concept code that illustrates the impact of the

vulnerabilities described above. It has been successfully tested in a production GAE

environment patched against security issues we reported to Google in Dec 2014 / Jan 2015.

REFERENCES

[1] "Google App Engine Java security sandbox bypasses", technical report

http://www.security-explorations.com/materials/se-2014-02-report.pdf

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

