

Security Vulnerability Notice

SE-2014-02-GOOGLE-4

[Google App Engine Java security sandbox bypasses, Issues 37-39]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered three additional security vulnerabilities in Google App
Engine for Java. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

37 Origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.invoke.MethodHandles.Lookup class

Cause incorrect implementation of findStatic method of the

MethodHandles.Lookup mirror class

Impact access to unintercepted method handles of static, security sensitive methods

Type partial GAE security bypass vulnerability

38 Origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.invoke.MethodHandles.Lookup class

Cause missing RuntimeVerifier.verifyAccessible security check in the

findStatic/findVirtual/findSpecial methods

Impact reflective access to members of classes loaded by non-user Class Loaders

Type partial GAE security bypass vulnerability

39 Origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.invoke.MethodHandles.Lookup class

Cause missing RuntimeVerifier.verifyAccessible security check in the bind

method

Impact reflective access to methods of classes loaded by non-user Class Loaders

Type partial GAE security bypass vulnerability

Issue 37 makes it possible to invoke static methods of certain, security sensitive classes

such as java.net.URLClassLoader class. The problem stems from the fact that GAE

API Interception mechanism assumes that static method lookups can be only done with

respect to the classes that declare them. In Java, static methods are "inherited" by

subclasses and are resolved in a similar way as instance methods. As a result, static

methods can be successfully resolved from subclasses of the classes that declare them. In

our Proof of Concept codes we exploit this condition to obtain access to the unintercepted

newInstance method handle of java.net.URLClassLoader class. This leads to an

arbitrary Class Loader instantiation and Class Sweeper / JRE Class Whitelisting escape.

Issues 38 and 39 manifest an inconsistency in the way security checks are implemented by

GAE Reflection API interception layer. All of the mirrored core Reflection API classes include

the invocation of a RuntimeVerifier.verifyAccessible security check verifying

whether a given Class member (a Method, Field or Constructor) can be accessed from a

user class loader namespace. Such a security check is however missing from Method

Handles API. As a result, sole access to a restricted Class object1 can be exploited to create

arbitrary instances of restricted GAE classes and to call their methods.

Issue 38 stems from a missing security check in the shared find method used internally by

findVirtual, findSpecial and findStatic methods of the

MethodHandles.Lookup mirror class. Issue 39 has similar origin, but the check is missing

from the bind method of the MethodHandles.Lookup mirror class (it does not rely on

the find method).

1
 such as a Class originating from a non-user Class Loader namespace or that is not on the JRE Class Whitelist.

Issues 37 and 38 could be combined together to achieve a complete GAE Java security

sandbox escape. The following exploitation scenario is implemented in our Proof of Concept

code (POC29) to illustrate that:

1) Issue 37 is used to create an instance of a java.net.URLClassLoader class (UCL

loader),

2) UCL loader is used to obtain a reference to the restricted

com.google.apphosting.runtime.security.URLClassLoaderFriend GAE

class, this is possible since the parent of the UCL loader is a system Class Loader in

which namespace this class resides,

3) Issue 18 [1] is used to obtain a reference to a restricted sun.misc.Resource JRE

class, it gets extracted from the parameter list of a private defineClass method of

java.net.URLClassLoader class,

4) Issue 38 is used to obtain a method handle to the constructor of

URLClassLoaderFriend class,

5) constructor method handle obtained in step 4 is used to instantiate the

URLClassLoaderFriend class, current Thread's context class loader is provided

(UserClassLoader instance) as constructor's argument,

6) Issue 38 is used to obtain method handle references to getResource and

defineClass methods of URLClassLoaderFriend class,

7) the resource object corresponding to a PrivLoader class is obtained by invoking

the getResource method handle with a path argument denoting a location of the

PrivLoader class,

8) the resource object obtained in step 7 is provided as an argument to the

defineClass method handle invocation, as a result, an intermediate Class Loader

class (PrivLoader) is defined in UserClassLoader namespace and outside of a

GAE Class Sweeper sandbox,

9) an instance of a PrivLoader class is created and used to define a privileged

HelperClass class,

10) HelperClass class is instantiated and a Security Manager is turned off.

It's worth to note that the above scenario makes use of Issue 18, which was evaluated by

Google as working as intended (WAI) issue. We have warned Google2 that this weakness

may turn out to be helpful in a future attack. In our exploit scenario, Issue 18 proves to be

helpful again as it allows to obtain a reference to a restricted JRE class (from a sun.*

package). In a standard JRE environment, this would not be possible as user code would

need to possess proper privileges to achieve that3.

Attached to this report, there is a Proof of Concept codes that illustrates the impact of the

vulnerabilities described above. It has been successfully tested in a production GAE

environment patched against security issues we reported to Google in Dec 2014 / Jan 2015.

2
 we did it on 27-Dec-2014 at the time of providing Google with arguments regarding WAI Issues 17-20. These

arguments have been also presented in our technical report (2.4.1.2 Closing thoughts).
3
 RuntimePermission("accessClassInPackage.sun")

REFERENCES

[1] "Google App Engine Java security sandbox bypasses", technical report

http://www.security-explorations.com/materials/se-2014-02-report.pdf

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

