

Errata for Security Vulnerability Notice

SE-2014-02-ORACLE-ERRATA

[Google App Engine Java security sandbox bypasses, Issue 42]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

INTRODUCTION
On Jun 30, 2015 Security Explorations reported a security vulnerability (Issue 42) to Oracle
affecting Java SE 7 [1].

In our original report [2], we indicated that the vulnerability had its origin in

klassItable::initialize_itable_for_interface method's implementation of

Java SE 7 HotSpot VM. We have recently learned that our initial analysis regarding the root
cause of Issue 42 was incorrect.

Below, we provide more detailed information about the actual cause of the vulnerability, the
reasoning that has mislead us into concluding that Issue 42 was caused by an improper
initialization of non-public interface method slots and some additional findings regarding this
issue.

THE REAL ROOT CAUSE
The actual cause of Issue 42 (assigned CVE-2015-4871) lies in the possibility to convert a

DirectMethodHandle denoting an interface method to a method handle indicating a

special instance method (the method invoked with the use of an invokespecial instruction).
This can in particular occur at the time of a binding1 the receiver of a target method handle.
As a result, protected instance methods could be successfully used (and called) as interface
methods. The reason is the invokespecial bytecode instruction which can access such

methods (invokeinterface cannot).

The abovementioned method handle conversion takes place in a private maybeRebind

method of java.lang.invoke.DirectMethodHandle as illustrated on Fig. 1:

Fig. 1 Method handle conversion exploited by Issue 42.

The maybeRebind method can be reached as part of a bindTo method invocation chain,

which is illustrated on Fig. 2.

1
 with the use of a bindTo method of java.lang.invoke.MethodHandle class.

Fig. 2 The bindTo invocation chain leading to maybeRebind method.

The root cause of Issue 42 can be easily confirmed by running our POC code [3] with

DEBUG_NAMES method handles API debugging property enabled2. It provides the following

output if run under vulnerable Java SE 7 software:

MethodHandle(MyINTF)void/LF=DMH.invokeInterface_L_V=Lambda(a0:L,a1:L)=>{

 t2:L=DirectMethodHandle.internalMemberName(a0:L);

 t3:V=MethodHandle.linkToInterface(a1:L,t2:L);t3:V}/

 DMH=Test$MyINTF.setError()void/invokeInterface

Test$MyPrintStream@986b0ee

checkError(): false

MethodHandle()void/LF=BMH.reinvoke=Lambda(a0:L)=>{

 t1:L=BoundMethodHandle$Species_LL.argL1(a0:L);

 t2:L=MethodHandle.reinvokerTarget(a0:L);

 t3:V=MethodHandle.invokeBasic(t2:L,t1:L);void}/

 BMH=[MethodHandle(MyINTF)void

/LF=DMH.invokeSpecial_L_V=Lambda(a0:L,a1:L)=>{

 t2:L=DirectMethodHandle.internalMemberName(a0:L);

 t3:V=MethodHandle.linkToSpecial(a1:L,t2:L);t3:V}/

 DMH=java.io.PrintStream.setError()void/invokeSpecial,

 Test$MyPrintStream@986b0ee]

checkError(): true

The above clearly shows that a type of a target DirectMethodHandle (DMH) gets

changed from invokeInterface to invokeSpecial. At the same time the interface

method handle is changed, so that it denotes a target instance method.

THE FAILED REASONING
Our original Proof of Concept Code (POC) was developed in Java SE 7 environment as this
Java version was in use by Google App Engine at the time of our investigation (May / Jun
2015).

We verified that the POC didn't work under Java SE 8. In order to locate the root cause of
the vulnerability, we proceeded with a more detailed investigation of the reasons for the
failure of the POC in Java SE 8.

2
 with -Djava.lang.invoke.MethodHandle.DEBUG_NAMES=true argument passed to JVM.

We noticed that in Java SE 8, the invocation of a protected instance method through an

interface method handle triggered IllegalAccessError. This error was raised by

throwIllegalAccessError method of sun.misc.Unsafe class:

 java.lang.IllegalAccessError

 at sun.misc.Unsafe.throwIllegalAccessError(Unsafe.java:1139)

 at Test$MyPrintStream.invoke_interface(Test.java:58)

 at Test.main(Test.java:69)

We inspected OpenJDK 8 source code and discovered that throwIllegalAccessError

method of sun.misc.Unsafe class was invoked only from one code location. This was the

klassItable::initialize_itable_for_interface method and its part handling

initialization of interface method tables entries corresponding to invalid (such as non-public)
interface methods in particular:

 if (target == NULL || !target->is_public() || target->is_abstract()) {

 // Entry does not resolve. Leave it empty for AbstractMethodError.

 if (!(target == NULL) && !target->is_public()) {

 // Stuff an IllegalAccessError throwing method in there instead.

 itableOffsetEntry::method_entry(

 _klass(), method_table_offset)[m->itable_index()].

 initialize(Universe::throw_illegal_access_error());

 }

 }

At the same time, we discovered that a code sequence corresponding to Java SE 8 location

where a slot of a non-public interface method was filled with a pointer to the method

throwing an IllegalAccessError was missing in OpenJDK 7 code:

 methodOop target = klass->uncached_lookup_method(

 method_name, method_signature);

 ...

 if (target == NULL || !target->is_public() || target->is_abstract()) {

 // Entry do not resolve. Leave it empty

 }

In the next step, we decided to verify whether Issue 42 had its origin in

klassItable::initialize_itable_for_interface method's implementation. We

considered the following two options to proceed with:
1) recompilation of OpenJDK 7 software with an additional code sequence

corresponding to Java SE 8 code (filling the IllegalAccessError throwing

method in the invalid interface table entry),
2) modification of Java SE 8 binary in a way that would "mimic" Java SE 7 code

behavior (no IllegalAccessError throwing method in the invalid interface table

entry).

We chose the second option as it was more easier / faster to proceed with. We kept in mind
that a backport of method handles implementation was made from Java SE 8 to Java SE 73.
As a result, we assumed that the implementation of method handles API would not differ
much between Java SE 7 and 8 versions. At that time, we were not aware of inconsistent

3
 on 26-Jul-2013 Oracle informed us that Issue 69 of SE-2012-01 project would be addressed by a backported

(from JDK 8) implementation of the affected component (method handles API) in JDK 7 Update 40 [4].

changes being applied to their code bases (that their implementation could differ at core
Java classes level in particular). This reasoning and approach taken is illustrated on Fig. 3.

Fig. 3 The illustration of a wrong assumption leading to the incorrect root cause analysis.

We modified jvm.dll binary of Java SE 8 Update 45 software, so that a code sequence

implementing the initialization of an interface table method entry with an

IllegalAccessError throwing method was always skipped. We accomplished that by

applying the following change to Java VM code:

 original code sequence:

 loc_704E555A:

 mov eax, [rdx+20h]

 movzx ecx, al

 and cl, 1 ; JVM_ACC_PUBLIC 0x0001

 jz loc_704E568F ; -> !target->is_public()

 shr eax, 0Ah ; JVM_ACC_ABSTRACT 0x0400

 test al, 1

 jnz loc_704E568F ; -> target->is_abstract()

 ...

 loc_704E568F:

 test cl, cl

 jnz short loc_704E56C1

 mov rdi, cs:Universe___throw_illegal_access_error

 test rdi, rdi

 jz short loc_704E56C1

 movsxd rax, dword ptr [rsi+24h]

 movsxd rcx, dword ptr [rbp+67h]

 lea rax, ds:50h[rax*8]

 sub rcx, rax

 mov rax, [rbp+5Fh]

 mov rax, [rax]

 mov [rcx+rax], rdi

 patched code sequence:

 loc_704E555A:

 mov eax, [rdx+20h]

 movzx ecx, al

 and cl, ffh ; PATCHED INSTRUCTION

 jz loc_704E568F ; -> !target->is_public()

 shr eax, 0Ah ; JVM_ACC_ABSTRACT 0x0400

 test al, 1

 jnz loc_704E568F ; -> target->is_abstract()

 ...

 loc_704E568F:

We discovered that the patched JVM successfully processed the invocation of protected

methods through an interface method handle (no IllegalAccessError was thrown).

All of the above has lead us to the wrong conclusion that Issue 42 was caused by an

improper initialization of a non-public interface method slots.

ADDITIONAL FINDING

We decided to investigate this further in order to see when and why things started to differ

between Java SE 7 and 8 versions with respect to the flawed implementation of

DirectMethodHandle class.

We found out that the vulnerable code (bindArgument, bindReceiver and

maybeRebind methods of java.lang.invoke.DirectMethodHandle class) was

present in Oracle Java SE 8 till version 8 Update 31. It was not available any more in Java

SE 8 Update 40 released on Mar 3, 2015 [5]. The corresponding change was not however

applied to Oracle Java SE 7 code regardless of the mirror implementation of

java.lang.invoke.DirectMethodHandle class4.

We also inspected the OpenJDK source code and found out that a vulnerable code was

removed from OpenJDK 8 on Sep 10, 2014. This was done under the changeset associated

with bug id 8050166 [6] and annotated as "Get rid of some package-private methods on

arguments in j.l.i.MethodHandle" [7].

At the time of investigating a fix applied to OpenJDK 7 (OpenJDK bug id 8142882 [8]) and

addressing Issue 42 [9], we discovered that it was a mirror of the abovementioned

changeset from Sep 10, 2014. This indicates that CVE-2015-4871 would not exist if a

changeset from OpenJDK 8 was backported to OpenJDK 7 (if consistent changes were made

across Java SE 7 and 8 code bases).

FINAL WORDS

The case of incorrect analysis regarding the root cause of Issue 42 has reminded us that in

the world of security vulnerabilities, incorrect or unverified assumptions can easily lead to

wrong conclusions. These are usually the software vendors that fall victim of it. As it turns

out, the very same can happen to security researchers.

Java SE 7 and 8 runtimes may look similar, but the devil lies in the details. Some code

changes applied to their codebases are introduced in an inconsistent manner. As a result,

the underneath implementation of key Java VM features including core classes can be

different across Java SE 7 and 8. This can sometimes influence security of software and

4
 it also contained bindArgument, bindReceiver and maybeRebind methods.

either introduce new or leave existing vulnerabilities in code. This can also make their root

cause analysis very tricky of which CVE-2015-4871 is a perfect example.

REFERENCES

[1] SE-2014-02 Vendors status

http://www.security-explorations.com/en/SE-2014-02-status.html

[2] SE-2014-02-ORACLE, Issue #42

http://www.security-explorations.com/materials/SE-2014-02-ORACLE.pdf

[3] Proof of Concept code for Issue 42

http://www.security-explorations.com/materials/se-2014-02-42.zip

[4] SE-2012-01 Vendors status

http://www.security-explorations.com/en/SE-2012-01-status.html

[5] Java version history

https://en.wikipedia.org/wiki/Java_version_history

[6] JDK-8050166

https://bugs.openjdk.java.net/browse/JDK-8050166

[7] OpenJDK changeset for JDK-8050166

(src/share/classes/java/lang/invoke/DirectMethodHandle.java)

http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/diff/c7be76a1dda5/src/sha

re/classes/java/lang/invoke/DirectMethodHandle.java

[8] JDK-8142882

https://bugs.openjdk.java.net/browse/JDK-8142882

[9] OpenJDK changeset for JDK-8142882

(src/share/classes/java/lang/invoke/DirectMethodHandle.java)

http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/diff/c434c67b8189/src/sha

re/classes/java/lang/invoke/DirectMethodHandle.java

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

