
 

 

 

 

 

 

 

Security Vulnerability Notice 

SE-2014-02-ORACLE 

[Google App Engine Java security sandbox bypasses, Issue 42] 

  



 

 

DISCLAIMER 

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT 

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT 

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR 

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR 

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE 

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY 

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE 

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE. 

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE 

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION, 

USE, AND RESULTS OBTAINED FROM IT. 

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL 

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR 

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY, 

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL, 

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER 

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE 

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN 

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. 

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 

ERRORS. 

  



 

 

Security Explorations discovered a security vulnerability in Oracle Java SE 7 code. A table 
below presents its technical summary: 
 
ISSUE 

# 

TECHNICAL DETAILS  

42 origin HotSpot VM 

cause improper initialization of non-public interface method slots 

impact invocation of protected interface methods 

type partial security bypass vulnerability (Java SE 7) 
complete security sandbox bypass vulnerability (GAE) 

 

Issue 42 has its origin in klassItable::initialize_itable_for_interface 

method's implementation of Java SE 7 HotSpot VM [1]: 

    methodOop target = klass->uncached_lookup_method( 

      method_name, method_signature);  

    ... 

    if (target == NULL || !target->is_public() || target->is_abstract()) {   

 // Entry do not resolve. Leave it empty  <---- EMPTY CODE SEQUENCE  

                                                                                      

 

    } else { 

      // Entry did resolve, check loader constraints before initializing 

      // if checkconstraints requested 

      methodHandle  target_h (THREAD, target); // preserve across gc 

 

      if (checkconstraints) { 

       .., 

      } 

    } 

    // ime may have moved during GC so recalculate address 

               <---- INITIALIZATION OF A METHOD SLOT 

    itableOffsetEntry::method_entry(_klass(), method_table_offset) 

        [ime_num].initialize(target_h()); 

 

In the above code, a method slot corresponding to an interface method is always 

successfully initialized. This happens regardless of the fact that an instance method 

implementing the target interface method might not be public. As a result, protected 

instance methods can be successfully used as interface methods. This violates the Java 

Virtual Machine Language Specification [2]. The description of the invokeinterface bytecode 

instruction states that "if the selected method is not public, invokeinterface should throw an 

IllegalAccessError". 

The empty code sequence handling invalid (such as non-public) interface methods was 

changed in Java SE 8, so that a slot of a non-public interface method is filled with a pointer 

to the method throwing an IllegalAccessError. 

    if (target == NULL || !target->is_public() || target->is_abstract()) {   

      // Entry does not resolve. Leave it empty for AbstractMethodError. 

      if (!(target == NULL) && !target->is_public()) { 

        // Stuff an IllegalAccessError throwing method in there instead. 

        itableOffsetEntry::method_entry( 



 

 

   _klass(), method_table_offset)[m->itable_index()]. 

   initialize(Universe::throw_illegal_access_error()); 

        } 

    } 

As a result of the above code change, arbitrary invocation of a non-public interface method 

always triggers an exception. 

Attached to this report, there is a Proof of Concept code that illustrates the reported issue in 

Oracle Java SE environment. It has been successfully tested under JDK 7 Update 80 (build 

1.7.0_80-b15). 

Issue 42 was also verified to affect a production Google App Engine for Java [3][4] 

environment patched against all security issues reported to the company from Dec 2014 to 

Apr 2015 [5] (a complete Java security sandbox escape could be achieved in it). 

REFERENCES 

[1]  jdk7u80-b05 source code 

http://hg.openjdk.java.net/jdk7u/jdk7u-

dev/hotspot/file/2cd3690f644c/src/share/vm/oops/klassVtable.cpp 

[2] The Java Virtual Machine Specification, Java SE 7 Edition 
http://docs.oracle.com/javase/specs/jvms/se7/html/ 

[3] Google App Engine: Platform as a Service 

https://cloud.google.com/appengine/docs 

[4] Java Runtime Environment 

https://cloud.google.com/appengine/docs/java/ 

[5]  SE-2014-02 Details 

http://www.security-explorations.com/en/SE-2014-02-details.html 

 

About Security Explorations 

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability 

research. The company came to life in a result of a true passion of its founder for breaking 

security of things and analyzing software for security defects. Adam Gowdiak is the 

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with 

over 50 security issues uncovered in the Java technology over the recent years. He is also 

the hacking contest co-winner and the man who has put Microsoft Windows to its knees 

(vide MS03-026). He was also the first one to present successful and widespread attack 

against mobile Java platform in 2004. 


