

Security Vulnerability Report

SE-2011-01 Issues #5-16,#25-32

[cumulative report]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

This report presents information related to security vulnerabilities discovered by Security

Explorations in digital satelite TV receivers manufactured by Advanced Digital Broadcast

(ADB) company. Below, we provide a brief summary of them as originally reported1 to the

vendor.

[Issue #5 – JavaScript code executed in the context of a privileged Xlet]

Security manager object that is installed by default on ITI5800S, ITI5800SX, ITI2850ST and

ITI2849ST devices is implemented by com.adb.security.SystemSecurityManager

class. A code fragment below presents a sample implementation of its checkRead method:

public void checkRead(String s) {

 ISecurityFactory isecurityfactory = SecurityFactory.getInstance();

 if (isecurityfactory != null) {

 AppSecurityManager appsecuritymanager =

 isecurityfactory.getSecurityManager();

 if (appsecuritymanager != null) appsecuritymanager.checkRead(s);

 }

}

From the sample code above, one can notice that the actual security check (checkRead

method call) is forwarded to the AppSecurityManager object returned by the instance of

ISecurityFactory class. The problem stems from the fact that the call to

SecurityFactory.getInstance() returns null value for the Xion application context.

Since all security checks included in SystemSecurityManager class have the

implementation corresponding to the one presented above, no security checks are

performed at all for any JavaScript code executed in the context of a Xion web browser

(Xion Xlet to be precise).

[Issue #6 – Java domain privilege elevation via CVM.attachProcess call]

By issuing a call to sun.misc.CVM.attachProcess() method, one can elevate its

privileges in a Java environment of ITI5800S, ITI5800SX, ITI2850ST and ITI2849ST

devices. This can be easily accomplished by issuing the folloing code sequence:

 CVM.attachProcess(-1);

The -1 argument stands for the process PID. This PID value is special as it denotes a

privileged Java thread context (the one with all application level privileges).

In order to better understand the implication of the -1 PID, one needs to look into the way

security checks are performed in the environment of ADB digital satellite receivers.

Security manager object that is installed by default on ITI5800S, ITI5800SX, ITI2850ST and

ITI2849ST devices is implemented by com.adb.security.SystemSecurityManager

1 Issues 25-32 were not reported to Advanced Digital Broadcast - the company stopped responding to

Security Explorations’ e-mail messages and inquires soon after receiving information about multiple

security issues affecting its digital satellite TV receivers.

class. The code fragment below presents a sample implementation of its checkRead

method:

public void checkRead(String s) {

 ISecurityFactory isecurityfactory = SecurityFactory.getInstance();

 if (isecurityfactory != null) {

 AppSecurityManager appsecuritymanager =

 isecurityfactory.getSecurityManager();

 if (appsecuritymanager != null) appsecuritymanager.checkRead(s);

 }

}

From the sample code above, one can notice that the actual security check (checkRead

method call) is forwarded to the AppSecurityManager object returned by the instance of

ISecurityFactory class. For certain application contexts, the returned

AppSecurityManager object would be null as indicated by Issue 5. However, for other

contexts it will be the object instance of com.adb.security.AppSecurityManager

class.

Certain security sensitive Java domain operations require extra privileges. For example, a

call to checkRead method of a security manager object is invoked prior to allowing any file

read operation.

By inspecting the implementation of com.adb.security.AppSecurityManager class,

one can understand the implication of the process PID value for the security checks:

public void checkRead(String s) {

 int i = MpBase.currentProcess();

 if (i == -1) return;

 if (rootPermissionsGrantor.hasRootPermissions(i)) return;

 String s1 = getFullPath(s, i, false);

 try {

 checkPermission(new FilePermission(s1, "read"));

 } catch(SecurityException securityexception) {

 if (!authenticator.isHashCorrect(s1))

 throw new SecurityException("BAD.HASH");

 else

 throw securityexception;

 }

 ...

From the code fragment above, it can be clearly seen that no security manager check is

performed if file access is done in the context of PID -1. In such a case, the caller is

assumed to be fully trusted.

[Issue #7 – insecure local interfaces providing read/write root access to file

system]

There is a security vulnerability in the implementation of the /root/root.elf binary

available on ITI5800S and ITI5800SX devices. This binary is spawned by default from

/etc/init.d/rcS script upon system startup as illustrated below:

if [-x /root/root.elf]; then /root/root.elf; fi &

The problem with root.elf binary stems from the fact that:

 it is run as a daemon process,

 it is run with the privileges of a root user,

 it provides file system functionality via the named pipes interface

(/var/run/root_pipe_read and /var/run/root_pipe_write).

The file system functionality serviced by the root.elf process implements the following

functions:

 private static final int CMD_OPEN = 0x01;

 private static final int CMD_CLOSE = 0x02;

 private static final int CMD_READ = 0x03;

 private static final int CMD_WRITE = 0x04;

 private static final int CMD_IOCTL = 0x05;

 private static final int CMD_LSEEK = 0x06;

The protocol used to invoke a given function call is message based - a client attached to one

pipe endpoint (/var/run/root_pipe_read) sends message requests to the root.elf

process and reads results on the other pipe endpoint (/var/run/root_pipe_write).

The problem with the protocol used is caused by the fact that it does not implement any

security at all. As a result, any process in the system can make use of the privileged file

system access by the means of a simple messages exchange with the root.elf process.

The described issue becomes even more serious if a target process is run in the chroot

sandbox. If such a process has opened descriptors to the named pipes of the root.elf

process, these descriptors can be used by the attacker to escape the chroot sandbox and

access files beyond the configured secure environment. We have successfully verified that

this is the case for ITI5800S and ITI5800SX devices as the main.elf process has such

descriptors open. This is illustrated by the snapshot from our Proof of Concept code in

Appendix A.

 [Issue #8 – insecure local process environment (chroot sandbox)]

There is a security vulnerability in the implementation of a /root/main.elf binary

available on ITI5800 and ITI5800SX devices. This binary is spawned by default from

/etc/init.d/rcS script upon system startup. It implements the main functionality of a

set-top-box application such as GUI and MHP/OCAP middleware. The main.elf process is

also responsible for setting up the OS sandbox comprising of a chrooted file system

environment and unprivileged user id credentials. There is however a problem in the

implementation of the aforementioned sandbox as /dev/kmem file descriptor is left open in

the environment of a target sandboxed process. We have successfully verified that this is

the case for ITI5800S and ITI5800SX devices where the main.elf process has such a

descriptor open. This is illustrated by the snapshot from our Proof of Concept code in

Appendix A.

We have also verified that /dev/kmem file descriptor is open with read and write access in

the environment of the aforementioned devices.

Access to /dev/kmem device poses serious security risk to the security of a target OS.

Attackers, might use open /dev/kmem file descriptor to gain full access to the virtual

memory space of a target OS. This in particular, allows for the:

 access to restricted I/O functionality such as the one implemented by the GSECHAL

device driver,

 privilege elevation to user root and chroot sandbox escape,

 execution of attacker's code in the kernel context.

Security Explorations' Proof of Concept code successfully implements all of the three attack

scenarios mentioned above in the environment of ITI5800S and ITI5800SX devices.

[Issue #9 – insecure local process environment]

There is a security vulnerability in the implementation of the /dev/grantcap device

available on ITI2850ST and ITI2849ST devices. This device implements IOCTL code

0x40046301, which allows for the modification of capabilities sets for the current process.

This functionality is illustrated by the code fragment below:

.text:000000E0 mov.l @(h'68,pc), r0 ; [0000014C] = find_task_by_pid_type

.text:000000E2 add #-h'2C, r10

.text:000000E4 mov.l @(h'30,r10), r13 ; new cap

.text:000000E6 mov #0, r4

.text:000000E8 mov.l @(h'2C,r10), r5 ; tid

.text:000000EA jsr @r0

.text:000000EC mov #-1, r11

.text:000000EE tst r0, r0

.text:000000F0 bt/s loc_C0 ; -> error

.text:000000F2 mov r0, r12 ; task struct

.text:000000F4 mov r0, r4

.text:000000F6 mov.l @(h'58,pc), r0 ; [00000150] = cap_capget

.text:000000F8 mov r14, r9

.text:000000FA mov r14, r8

.text:000000FC add #h'10, r9

.text:000000FE mov r14, r6

.text:00000100 add #8, r8

.text:00000102 mov r9, r5 ; effective caps

.text:00000104 mov r8, r7 ; permitted caps

.text:00000106 jsr @r0

.text:00000108 add #h'C, r6 ; inheritable caps

.text:0000010A mov.l @(h'3C,r10), r1 ; effective caps

.text:0000010C mov r14, r6

.text:0000010E mov.l @(h'34,r10), r2 ; permitted cap

.text:00000110 mov r0, r11

.text:00000112 mov r12, r4 ; task struct

.text:00000114 mov r9, r5

.text:00000116 or r13, r1 ; set new effective caps

.text:00000118 mov.l r1, @(h'3C,r10)

.text:0000011A mov.l @(h'38,pc), r1 ; [00000154] = cap_capset_set

.text:0000011C or r2, r13 ; set new permitted caps

.text:0000011E add #h'C, r6

.text:00000120 mov.l r13, @(h'34,r10)

.text:00000122 jsr @r1

.text:00000124 mov r8, r7

The problem with the above implementation stems from the fact that there are no security

checks performed by the grantcap.ko device driver with respect to the privileges of a

process requesting the change of capabilities operation.

According to the ownership configuration of the /dev/grantcap device, access to it is

possible for user root and for the root group:

box> ls /dev/grantcap

crw-rw---- root root /dev/grantcap

However, inspection of the /etc/group file reveals that the user of the main MHP

application in particular (stb) is also part of the root group:

box> cat /etc/group

root::0:root,stb

bin::1:root,bin,daemon

daemon::2:root,bin,daemon

sys::3:root,bin,adm

adm::4:root,adm,daemon

tty::5:

storage::6:root,uapp01,stb

snmpd::7:snmpd

mem::8:

kmem::9:

stb::10:root,uapp01,stb

ftp::50:

lock::54:

nobody::99:

users::100:

rpcuser:x:29:

nfsnobody:x:65534:

utmp:x:22:

uapp01:x:13:

netd:x:14:root,uapp01

sshusr:x:800:

This makes it possible for any Java thread spawned in the main MHP application

environment to access /dev/grantcap device and to change the system credentials of the

corresponding native process.

Security Explorations implemented credential granting functionality in its Proof of Concept

code as illustrated below:

 public static void grantcaps(int caps) {

 int handle=Dl.open_flags("libstd_drv_grantcap.so",

 Dl.RTLD_NOW|Dl.RTLD_NODELETE);

 if (handle!=0) {

 int capset=Dl.getsym(handle,"GRANTCAP_Set");

 if (capset!=0) {

 NativeCode.getInstance().invoke(capset,caps,0,0,0,0,0,0,0);

 }

 }

 }

The ability to change target process capabilities has a straightforward implication on a

security of a target OS - it allows easy privilege elevation attack to user root.

[Issue #10 – no password for root user account]

There is a security vulnerability in the configuraion of ITI2850ST and ITI2849ST devices. We

found out that on these devices, the account of a root user does not have a password

configured for it:

c:_PROJECTS\DTV\>shell

NBOX HDTV client for ITI 5800S, ITI 5800SX, ITI 2850ST, ITI2849ST

(c) SECURITY EXPLORATIONS 2011 poland

box> go 1

box> cat /etc/passwd

root::0:0:root:/root:/bin/sh

bin:*:1:1:bin:/bin:/dev/null

daemon:*:2:2:daemon:/sbin:/dev/null

adm:*:3:4:adm:/var/tmp:/dev/null

snmpd:*:7:7::/opt/snmpd:/dev/null

ftp:*:14:50:FTP User:/var/tmp:/dev/null

nobody:*:99:99:Nobody:/:/dev/null

rpcuser:x:29:29:RPC Service User:/var/tmp:/dev/null

nfsnobody:x:65534:65534:Anonymous NFS User:/var/tmp:/dev/null

uapp01:*:13:13::/opt/uapp01/home: /dev/null
sshusr:*:800:800::/home/sshusr:/bin/sh

stb::555:10:stb:/home/stb:/bin/sh

In order to make use of a shell access to passwordless root account, one needs to make use

of a login service such as telnetd. Unfortunately, telnetd service is disabled by default on

both ITI2850ST and ITI2849ST devices. Additionally, these devices have iptables rules

configured that block inbound traffic to the telnetd port (23). However, when combined with

security Issue 11, the described vulnerability can be used to gain login access to the root

shell on a target device.

[Issue #11 – arbitrary device reconfiguration via environment variables]

There is a security vulnerability in the implementation of startup scripts used by ITI2850ST

and ITI2849ST devices. We found out that they rely on environment variables that control

such a functionality as:

 NAND factory reset,

 partition mounting,

 network configuration (including loading of iptables rules),

 starting of a telnetd service.

Actual reconfiguration changes are possible because the file, which holds certain

environment variables definition is available for writing to the user of the MHP application

process:

box> ls /mnt/flash/

[/mnt/flash/]

drwxrwxrwx root root app

-rw-rw---- stb stb nvram.dat 121

drwxrwx--- stb stb secure

Since, nvram.dat file is owned by stb user, all Java threads spawned in the environment of

the main MHP application can change the aforementioned file.

Issues 10 and 11 can be successfully combined together in order to start telnetd service and

to disable the loading of iptables rules. By investigating the contents of the

/etc/init.d/rcS file, one can find a way to ho to achieve it.

The following line can be found in the beginning of the /etc/init.d/rcS file, which is

executed upon system startup:

. /etc/.profile

This line results in the execution of the /etc/.profile shell script file. The contents of

this file is presented below:

box> cat /etc/.profile

export MAC=`/sbin/ifconfig eth0 |sed -n -r '/..:..:..:..:..:../p' |cut -b

39- |sed s/://g |sed '/^$/d; s/^[]*//g; s/[]*$//g'`

export NFS_PROJECT_PATH=ITI-2850ST

export PIL_DEBUG_DEVICE=/dev/ttyAS0

export BUILD_VERSION="P8_R03_RC3-711-rel-888982"

echo ">>> BUILD_VERSION: $BUILD_VERSION <<<<<<<<<<"

export BOOT_NET_SECURED=1

export BOOT_NET_IPTABLES=1

export BOOT_DHCP_START=1

export BOOT_AUTOIP_START=1

export BOOT_NFS_MOUNT=0

export BOOT_NFS_REMOTE=

export BOOT_TELNETD_START=0

export BOOT_MODULE_LOAD_REMOVE=0

export BOOT_SPLASH_SHOW=""

export BOOT_NAND_FACTORY_RESET=1

export BOOT_MOUNT_APP_STORAGE=1

export GSECHAL_IOCTL_DEV_PATH=/tmp/gsechal_core

export STTKDMA_IOCTL_DEV_PATH=/tmp/sttkdma_ioctl

export STDRMCRYPTO_IOCTL_DEV_PATH=/tmp/stdrmcrypto_ioctl

export STSECTOOLFUSE_IOCTL_DEV_PATH=/tmp/stsectoolfuse_ioctl

export VLAN_IPTV_IF=eth0.253

export VLAN_INET_IF=eth0.251

export KERNEL_PANIC_TIMEOUT=1

export WIRELESS_SUPPORT=0

export NET_STATIC_IP=0.0.0.0

export PPP_SUPPORT=1

export NVRAM_DAT_FILE=/mnt/flash/nvram.dat

if [-r $NVRAM_DAT_FILE]; then while read name value; do

 if [$name]; then

 name_len=`expr length $name`;

 all_char_alphanumeric=`expr $name : "[_[:alnum:]]\{$name_len\}"`;

 first_char_alphabetic=`expr $name : "[_[:alpha:]]"`;

 if [$all_char_alphanumeric -ne 0] && [$first_char_alphabetic -ne 0

]; then

 export $name=$value;

 else

 echo "WARNING skipping export of $name";

 fi

 fi

done < $NVRAM_DAT_FILE;

fi

export MEMORY_OVERCOMMIT_POLICY=2

export MEMORY_OVERCOMMIT_RATIO=97

export MODEM_TYPE=`/etc/modem-detect`

export PPP_COUNTRY=Poland

Upon execution of /etc/.profile, certain configurtion environment variables are being

set to default manufacturer values. Additionally, the contents of the

/mnt/flash/nvram.dat file is processed and the values of environment variables defined

in it are being set.

In order to enable telnetd and disable iptables rules one just needs to define the following

two variables in the /mnt/flash/nvram.dat file:

BOOT_NET_SECURED 0

BOOT_TELNETD_START 1

These variables are used by /etc/init.d/rcS script to control the configuration of

iptables and telnetd services as denoted by code fragments below:

if ["$BOOT_NET_SECURED" = "1"] ; then

 if [-d /proc/sys/net] ; then

 # disable IP forwarding

 echo 0 > /proc/sys/net/ipv4/ip_forward

 # ignore echo messages

 echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

 # ignore echo broadcasts

 echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

 # disable source routing

 for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do

 echo 0 > $f

 done

 # ignore redirects

 for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do

 echo 0 > $f

 done

 for f in /proc/sys/net/ipv4/conf/*/secure_redirects; do

 echo 0 > $f

 done

 # validate the source

 for f in /proc/sys/net/ipv4/conf/*/rp_filter; do

 echo 1 > $f

 done

 # ignore invalid error messages

 echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses

 else

 echo "WARNING: Unable to apply network configuration - enable /proc

& sys-ctl in the kernel"

 fi

 if ["$BOOT_NET_IPTABLES" = "1"] ; then

 # apply iptables rules

 /sbin/iptables-restore /etc/iptables.sav

 fi

else

 echo "WARNING: The STB network interfaces may be insecured !"

fi

...

if ["$BOOT_TELNETD_START" = "1"] ; then

 telnetd

fi

In a result of adding proper BOOT_NET_SECURED and BOOT_TELNETD_START environment

variables to /mnt/flash/nvram.dat file and after system reboot, /etc/.profile will

insert new variables into the environment and /etc/init.d/rcS will skip the

configuration of iptables and spawn telnetd service. This is sufficient to make use of the

passwordless root user account and gain shell access to the target device:

root@n:/# telnet 10.0.0.6

Trying 10.0.0.6...

Connected to 10.0.0.6.

Escape character is '^]'.

10.0.0.6 login: root

BusyBox v1.2.2 (ADB 1.2.20) (2011.09.28-08:38+0000) Built-in shell (ash)

Enter 'help' for a list of built-in commands.

>>> BUILD_VERSION: P8_R03_RC3-711-rel-888982 <<<<<<<<<<

pwd

/root

cat /mnt/flash/nvram.dat

BOOT_NET_SECURED 0

BOOT_TELNETD_START 1

FACTORY_RESET 0x00

STB_SIGNAL_SOURCE 0

BOOT_SPLASH_SHOW 1

exit

[Issue #12 – CAP_NET_ADMIN and CAP_NET_RAW in MHP process capabilities

set]

There is a security vulnerability in the implementation of the MHP process security sandbox

of ITI2850ST and ITI2849ST devices. More specifically, we found out that both

CAP_NET_ADMIN and CAP_NET_RAW capabilities are enabled in the capabilities set of a

main MHP process.

Both capabilities are usually associated with the functionality of a root user. Out of these

two, CAP_NET_RAW is in particular interesting as it allows for the use of use of RAW /

PACKET sockets.

Security Explorations successfully demonstrated that arbitrary Java thread executing in the

context of a main MHP application can completely disable and flush all iptables rules. We

accomplished that by creating a raw socket for IPPROTO_RAW protocol and setting properly

constructed IPT_SO_SET_REPLACE socket option on it.

[Issue #13 – Xion URI handlers evaluation flaw]

There is a security vulnerability in the implementation of a Xion web browser. More

specifically, we found out some inconsistency pertaining to the way URI handlers are

evaluated by it.

In Xion, arbitrary URI loading is handled by the

com.adb.dvbhtml.dom.environment.WindowImpl class and its loadDocument

method:

protected boolean loadDocument(URI uri, boolean flag) {

 if (isRecursiveChain(uri)) {

 uri = BLANK_URI;

 flag = false;

 }

 System.out.println("------------- opening document in " +

 getName() + " window from uri " + uri);

 if (null != document) cleanUp();

 document = (DVBHTMLDocumentImpl)impl.createDocument(null, "html",

 null);

 document.referrer = referrer;

 referrer = null;

 createInternalStructure();

 document.ownerWindow = this;

 if (executeURIHandlers(uri)) return false;

 ...

}

This method invokes executeURIHandlers method in order to handle certain special URI

schemes such as exit, history and about. This method also checks if a given URI

should be handled by one of registered Xion URI Plugins.

There exists an inconsistency regarding allowed <http-client> schemes configured in

the /lib/xion-properties.xml file and actually permitted schemes. Even if the

<http-client> property allows only for the https scheme, it is still possible to use the

http scheme in order to fetch arbitrary content from unrusted websites. This is possible

because URI handling may be conducted by the URI plugin handler (the subclass of

com.adb.dvbhtml.URIHandlerPlugin class and its handleURI method), instead of

the usual Xion document loading mechanism (parseDocument method of

com.adb.dvbhtml.dom.DVBHTMLDocumentImpl class).

The described weakness can be exploited with the use of any of the Xion plugins configured

in the /lib/xion-properties.xml file:

<plugins>

 <!-- special uris handlers -->

 <plug class = "tv.osmosys.dvbhtml.DVBHandlerPlugin" />

 <plug class = "tv.osmosys.application.handlers.AITHandler" />

 <plug class = "tv.osmosys.xion.ext.videompeg.XionVideoMp4Plugin" />

 <plug class = "tv.osmosys.xion.ext.iti.plugins.YTSplash"

 splash_sd="/resources/youtubetextsd.mpg"

 splash_hd="/resources/youtubetexthd.mpg" />

</plugins>

Security Explorations successfully verified that AITHandler can be used to fetch content

with the use of http scheme even if it is not included in the list of schemes of <http-

client> configuration property.

[Issue #14 – Xion browser configuration file replacement]

There is a security vulnerability in the implementation of a Xion web browser. We found out

that arbitrary user processes can create alternative xion-properties.xml file that will be

loaded upon browser startup, instead of a default system configuration located in a /lib

directory.

The problem has its origin in the com.adb.xion.Bootstrap class and its

findConfigFile method:

static File findConfigFile() {

 Vector vector = new Vector();

 vector.add(PlatformProvider.getSystem().getAppStorageRoot());

 for(int i=0;i<DEFAULT_CFG_SEARCH_PATH.length;i++)

 vector.add(DEFAULT_CFG_SEARCH_PATH[i]);

 vector.add(PlatformProvider.getEnviroment().getProperty("user.dir"));

 if (PlatformProvider.getEnviroment().getProperty(

 "com.adb.xion.cfgpath")!=null) {

 for(StringTokenizer st=new StringTokenizer(

 PlatformProvider.getEnviroment().getProperty(

 "com.adb.xion.cfgpath"),",");

 st.hasMoreElements();vector.addElement(st.nextToken()));

 }

 String s=System.getProperty("com.adb.xion.cfgpath",

 "xion-properties.xml");

 for(int j=0;j<vector.size();j++) {

 String s1=vector.elementAt(j).toString()+"/"+s;

 File file=new File(s1);

 if (file.exists()&&!file.isDirectory()) return file;

 }

 }

 return null;

}

The method above return an instance of the File object denoting the location of the first

Xion configuration file identified by the xion-properties.xml name. For that purpose it

checks different file system locations. One of the first locations that is inspected points to

the directory returned by the

PlatformProvider.getSystem().getAppStorageRoot() expression. By looking into

the implementation of com.adb.xion.platform.SystemImpl class, one can discover

the following:

public String getAppStorageRoot() {

 return "/flash";

}

The above implementation means that by placing the location of a xion-properties.xml

file in a /flash directory, one can enforce loading of arbitrary Xion browser configuration

from user provided file instead of a system one. This is caused by the fact that default

system configuration is checked after the user one.

The impact of the described issue is quite serious. Security Explorations verified that by

replacing the Xion configuration file, attackers can:

 enable forbidden URI schemes,

 disable https authentication checks,

 persistently install malware code in a target system.

[Issue #15 – insecure definition of a system class loader's classpath]

There is a security vulnerability in the JVM configuration used by ITI5800S, ITI5800SX,

ITI2850ST and ITI2849ST devices. We found out that system class loader's classpath

contains / root directory. Such a classpath configuration has serious implications to security

as it allows for the injection of:

 user provided classes deployed in a /flash directory into system class loader's

namespace,

 user provided classes fetched over the IC HTTP transport into system class loader's

namespace.

Security Explorations used a combination of Issue 14 and Issue 15 to successfully install

persistent malware code on a target ADB device.

[Issue #16 – unsigned Xlet execution flaw]

There is a security vulnerability in the MHP software implementation of ITI5800S,

ITI5800SX, ITI2850ST and ITI2849ST devices. More specifically, we found a way to execute

unsigned applications carried in a specially crafted Application Information Table. In our

attack, the AIT table describing the Xlet to execute is denoted explicitly by the URI ending

with the .ait extension (AIT URI). Such an extension is handled by the special URI handler

denoted in the Xion browser configuration file -

tv.osmosys.application.handlers.AITHandler class in this case.

In a result of opening the AIT URI by the Xion web browser, the target AIT file is fetched

and parsed by the instance of tv.osmosys.application.providers.NetBinParser

class. This file has the same syntax as the Application Information Section (table_id 0x74)

described in MHP 1.1.x specification. For the purpose of a successfull attack scenario we

used the AIT file with the following properties:

application_type = 0x01 (APP_DVB_J)

service_bound_flag = 0 (app not bound to any service)

visibility = 0 (app not visible)

application_priority = 0xff (maximum priority)

application_control_code = 0x01 (AUTOSTART)

app_id = 0x4000 (app_id from unsigned app range)

transport protocol_id = 0x03 (transport via HTTP over IC)

Upon successfull parsing of tha AIT file, new instance of

tv.osmosys.application.XletApp class is created by the AppManager and an

attempt is made to mount the URI for the IC protocol in a target system. Successfully

mounted protocols are identified by a mountpoint. In the environment of ITI5800S,

ITI5800SX, ITI2850ST and ITI2849ST devices, these mountpoints always start in /oc/htX

directory, where X is the number of a conducted mount operation. What's important to

remember is that X gets incremented after each mount operation.

Prior to the Xlet application loading, new instance of

com.adb.java.lang.FileClassLoader object is created with a classpath denoting the

directory where Xlet's IC URI was mounted. Then a call to loadClass method is invoked

for the created class loader and with the name of a target Xlet class to load.

Implementation of the loadClass method of FileClassLoader class first asks the

system class loader for a target class to load. If not found, it tries to load the class on its

own from the file system. However, prior to the actual call to defineClass method, digital

signature of a to be loaded class’ bytes is verified. If it turns out not to be trusted, no class

is loaded into JVM and the Xlet application is immediately terminted as illustrated in the

code below:

protected Class readFromFile(File file, boolean flag, String s) throws

IOException, SecurityException {

 ReadFromFilePrivilegedAction readfromfileprivilegedaction = new

 ReadFromFilePrivilegedAction(file);

 String s1 =

 (String)SecurityFactory.doNoSecurityCheck(readfromfileprivilegedaction);

 if (s1 == null) throw new FileNotFoundException(file.toString());

 if (!canLoadObject(MpBase.currentProcess(), s1,

 readfromfileprivilegedaction.getBytes(), flag)) {

 throw new SecurityException("Object " + s1 + " is not authenticated

 to load")

 } else {

 byte abyte0[] = readfromfileprivilegedaction.getBytes();

 return super.defineClass(s, abyte0, 0, abyte0.length,

 defaultProtectionDomain);

 }

}

The check for a digital signature does not need to take place in order to successfully load

arbitrary Xlet application into Java VM. One can make use of the fact that a call to

findSystemClass is performed earlier and that IC mountpoints are quite predictable. If

the Xlet application is defined in the oc.htX package, a call to loadClass would

delegate class loading to the system class loader first. Because of Issue 15, system class

loader would traverse directory /oc/htX for the search of a target class. A mountpoint

located at /oc/htX would result in a download of a target class bytes from the IC URI.

Downloaded class bytes would be used for the defineClass method call and a valid class

instance would be returned by the FileClassLoader. All of the described actions would

happen prior to any digital signature checks.

Arbitrary execution of user provided Java code is just the matter of a proper implementation

of the target Xlet's constructor.

There is one obstacle related to the guessing of a target oc.htX mountpoint (and the

package of attacker's Xlet application). An analysis of the consecutive numbers used by the

system for the mountpoint names allowed us to conduct reliable guesses of them. We

simply try to invoke many Xlet applications with properly selected oc.htX package names,

so that proper /oc/htX mountpoint would be hit by the system class loader during its

search for the target class.

Security Explorations developed a small utility for generating arbitrary AIT files that

successfully exploit the described unsigned Xlet execution flaw. Upon opening the target AIT

file in the Xion web browser, attacker provided class file is loaded from arbitrary URL and it

gets executed (its <init> method is called).

At the end, we would also like to mention that the described vulnerability can potentially be

used by rogue digital satellite TV operators to execute code on the equipment of the users

watching the broadcasted programming with embedded, potentially malicious AIT

applications.

[Issue #25 – shared open files descriptors]

There are open descriptors to /dev/mtd0 and /dev/mtd1 in the main MHP process that

could be abused by attackers to access the flash memory. The descriptors are open in 0x02

mode (O_RDWR), which allows for both read and write operations. This could be used to

overwrite the flash memory of a target device.

Issue #25 is similar to Issue #8, however it does signal a much bigger problem related to

the security architecture of a taget set-top-box system.

There are LinuxThreads used to implement target threads executed in the context of a

single MHP process. LinuxThreads have a number of problems, mainly owing to the

implementation, which use the clone system call to create a new process sharing the

parent's address space [1]. Beside sharing the whole address space (code, data and heap

segments), POSIX.1 also requires that threads share a range of other attributes such as

open file descriptors [2].

What this means is that by breaking security of a single thread, attackers can get access to

all resources (i.e. memory, open file descriptors) of all other threads (including those more

privileged) of the MHP application.

[Issue #26 – plaintext upgrade decryption key available in MPEG stream]

For ITI5800S and ITI5800SX, the upgrade image sent as part of dedicated MPEG streams

(indicated by the SSU data) is encrypted with the use of a tweaked Twofish algorithm and a

128-bit decryption key. The problem with the implementation of the upgrade uploading

mechanism implemented in ITI5800S and ITI5800SX devices stems from the fact that the

decryption key is sent in plaintext among the data for the upgrade image. The key is carried

inside a WLDO section as illustrated by the sample MPEG dump below:

size: 000000b6

 0000: 80 f0 b3 12 34 ff 00 00 00 00 57 4c 44 4f b2 b0 4.....WLDO..

 0010: 00 1b 45 1f 48 65 72 6d 65 73 35 38 30 30 73 20 ..E.Hermes5800s.

 0020: 5b 42 32 2e 42 30 2e 34 35 5d 20 44 6f 77 6e 6c [B2.B0.45].Downl

 0030: 6f 61 64 00 8a 00 11 00 39 18 44 26 54 3a 20 32 oad.....9.D&T:.2

 0040: 30 30 39 2d 31 32 2d 31 31 20 31 32 3a 32 37 3a 009-12-11.12:27:

 0050: 31 33 1f 48 65 72 6d 65 73 35 38 30 30 73 20 5b 13.Hermes5800s.[

 0060: 42 32 2e 42 30 2e 34 35 5d 20 44 6f 77 6e 6c 6f B2.B0.45].Downlo

 0070: 61 64 00 3e 1e 15 4a d5 2d 7f 6d eb ad c8 33 25 ad.>..J.-.m...3%

 0080: 1d ed ae db 64 ac c1 e1 75 85 2c e3 32 57 29 9c d...u.,.2W).

 0090: 32 a1 e4 1e 85 47 6d da 77 99 20 3a 2d f0 9f c0 2....Gm.w..:-...

 00a0: dc 52 fc ad 3c 43 a7 dd d3 d7 46 a2 1c ad 8d ac .R..<C....F.....

 00b0: 2a c0 51 15 08 e8 *.Q...

First, there is a magic WLDO string:

57 4c 44 4f "WLDO" magic

It is followed by the information about a hardware and vendor id of the upgrade image:

b2 b0 hwid

00 1b 45 vendor id

Next, we have a length and some string description of the upgrade image:

1f len

48 65 72 6d 65 73 35 38 30 30 73 20

5b 42 32 2e 42 30 2e 34 35 5d 20 44 6f 77 6e 6c Hermes5800s [B2.B0.45] Download

6f 61 64

It is followed by the information about a total MPEG sections count of the upgrade image:

00 8a section count ?

00 11 loader section count ?

00 39

Later, there is a length and some string description for the date and time of the upgrade

image:

18 size

44 26 54 3a 20 32 oad.....9.

30 30 39 2d 31 32 2d 31 31 20 31 32 3a 32 37 3a D&T: 2009-12-11.12:27:13.

31 33

Next, we again have a length and some string description of the upgrade image:

1f size

48 65 72 6d 65 73 35 38 30 30 73 20 5b Hermes5800s.[B2.B0.45].Download

42 32 2e 42 30 2e 34 35 5d 20 44 6f 77 6e 6c 6f

61 64

Finally, we have a fragment that carries both the length and a decryption key for the

upgrade image. All in plaintext.

00 3e key size

1e 15 4a d5 2d 7f 6d eb ad c8 33 25 ad.>..J.-.m...3%

1d ed ae db 64 ac c1 e1 75 85 2c e3 32 57 29 9c d...u.,.2W).

32 a1 e4 1e 85 47 6d da 77 99 20 3a 2d f0 9f c0 2....Gm.w..:-...

dc 52 fc ad 3c 43 a7 dd d3 d7 46 a2 1c ad 8d ac .R..<C....F.....

2a c0 51 15 08 e8 *.Q...

Security Explorations verified that the key data carried in WLDO sections can be successfully

used to decrypt the encrypted upgrade image data sent to ITI5800S and ITI5800SX devices.

We were able to obtain plaintext Compressed ROMFS images, which could be mounted later

under the Linux OS.

[Issue #27 – crippled security manager implementation]

There is a problem related to the implementatin of the custom security manager for the

Java environment. The class com.adb.security. AppSecurityManager holds a private

field rootPermissionsGrantor which contains a reference to the object of

com.adb.security. RootPermissionGrantor class. This reference is initialised in the

following way:

 public AppSecurityManager(IAuthenticator iauthenticator,

 IPermissionsProvider ipermissionsprovider,

 IRootCertificatesManager irootcertmgr,

 String as[]) {

 extPackageDefinition = null;

 instanceCounter++;

 permProvider = ipermissionsprovider;

 authenticator = iauthenticator;

 rootPermissionsGrantor = RootPermissionGrantor.getInstance();

The above indicates that a static call to getInstance method of

com.adb.security.RootPermissionGrantor class is used to initialize aforementioned

rootPermissionsGrantor field.

A quick look at the implementation of com.adb.security.RootPermissionGrantor

class reveals the following:

 public static IRootPermissionsGrantor getInstance() {

 return m_instance;

 }

Thus, there is one global instance of RootPermissionGrantor object in the system.

RootPermissionGrantor object is used by AppSecurityManager for the

implementation of various security checks as ilustrated below:

 protected void checkPIDPermission(Permission permission) {

 int i = MpBase.currentProcess();

 if (i == -1)

 return;

 if (rootPermissionsGrantor.hasRootPermissions(i))

 return;

 Permissions permissions = permProvider.getPermissions(i);

 If (permissions == null)

 throw new SecurityException();

 if (!permissions.Permissions.implies(permission)

 && !checkIxcPermission(permissions, permission))

 throw new SecurityException("No Permissions found for PID 0x" +

 Integer.toHexString(i) + " " + permission);

 else

 return;

 }

In particular, the check for a given permission is always successful if the

rootPermissionsGrantor object says so.

The problem with RootPermissionGrantor class stems from the fact that its instance

can be easily obtained and a root permission can be granted to arbitrary processes with the

use of a grantRootPermissions method call:

 public void grantRootPermissions(int i) {

 MpBase.doImmortal(new PutPrivilegeAction(i));

 }

The described implementation of a security manager object breaks security of the whole

Java environment as it allows for easy bypass of all security checks imposed on MHP or

DVB-J applications.

[Issue #28 – arbitrary system reconfiguration via environment variables]

It is possible to influence the configuration of a target device or MHP application by the

means of environment variables. User defined environment variables can be set through

/eeprom/env file. They will be read upon system boot up or immediately after issuing a

call to /proc/triggers/env_reload trigger2.

Some variables influence the security of the whole system environment. This includes, but is

not limited to the following variable names:

SECURITY_MANAGER

SECURITY_MODE

SIGNED_XLETS_ONLY

XION_RESTRICTED_PROTOCOLS

[Issue #29 – easy websites’ spoofing]

The Xion web browser does not present any information with respect to the target website

from which the content was fetched and is being presented on the user’s TV screen. Such a

behaviour allows for an easy spoofing of websites in the context of attackers having access

to the target ADB device. For example, users might be redirected to the fake Allegro or BOK

website under attacker’s control. All of this could happen without the user’s consent.

2 The trigger is called when its file is opened and read.

Arbitrary redirection to the fake website can be implemented in the environment of ADB set-

top-boxes with the use of a proper URIConnectionHandler subclass.

Security Explorations verified and implemented support for redirection of arbitrary websites

in its Proof of Concept code. This was accomplised by the means of a specially crafted

URIHandler class as illustrated below:

public static class URIHandler implements URIConnectionHandler {

 public URIConnection createConnection(URI uri) throws

 URIConnectionException {

 String scheme=uri.getScheme();

 if (scheme==null) return null;

 scheme=scheme.toLowerCase();

 URIConnection conn=null;

 if (scheme.equals("http")||scheme.equals("https")) {

 String mappeduri=(String)urimap.get(uri.toExternalForm());

 if (mappeduri!=null) {

 uri=new URI(mappeduri);

 if (uri.getScheme().equals("flash")) {

 conn=URIConnectionFactory.getInstance().createURIConnection(uri);

 } else {

 ...

 }

 } else {

 ...

 }

 } else {

 conn=new com.adb.xion.net.nativehttp.URIConnection(uri);

 }

 return conn;

}

[Issue #30 – arbitrary write access to open file descriptors]

A class tv.osmosys.java.io.DebugStream available for Java applications exposes the

following method:

 public void write(int i) {

 nativeWrite(fd, i);

 }

The above indicates that Java applications can issue write operation on arbitrary open file

descriptors. This issue is in particular important in the context of Issue #25 (shared open file

descriptors).

[Issue #31 – arbitrary kernel I/O space access]

ITI2849ST and ITI2850ST devices contain a library libstd_drv_mem.so, which can be

easily leveraged to obtain access to the kernel I/O space by unprivileged processes.

Security Explorations verified that among other things, this could be successfully used to

obtain access to the restricted I/O ports of the STi7111 chipset.

In our Proof of Concept code’s implementation we make use of the following symbols

exported by the libstd_drv_mem.so library to achieve the aforementioned goal:

 handle=Dl.open_flags("libstd_drv_mem.so",Dl.RTLD_NOW|Dl.RTLD_NODELETE);

 mopen=Dl.getsym(handle,"MEM_Open");

 mclose=Dl.getsym(handle,"MEM_Close");

 mread=Dl.getsym(handle,"MEM_Read32");

 mwrite=Dl.getsym(handle,"MEM_Write32");

[Issue #32 – arbitrary kernel access via dbgio interface]

ITI5800S and ITI5800SX set-top-box devices expose /dev filesystem in the environment of

the sandboxed (chroot) process. Among devices available under /dev directory, there is a

/dev/dbgio device, which can be open in O_RDWR mode by the thread operating in the

context of the unprivileged MHP process.

There is a problem with the implementation of a device driver implementing the functionality

of the /dev/dbgio device. This problem stems from the fact that the driver implements

several IOCTL calls allowing for arbitrary read / write kernel memory access, but does not

implement any security checks at all with respect to who can access the device or to which

kernel memory range arbitrary IOCTL calls can be issued.

This is illustrated by a sample code fragment below implementing the IOCTL handler for the

read memory functionality:

.text:00000040 mov.l @(h'A8,pc), r1 ; [000000EC] = h'40046401

.text:00000042 cmp/eq r1, r6

.text:00000044 bt/s loc_60 ;jump if read memory IOCTL

.text:00000046 mov #-5, r0

.text:00000048 mov.l @(h'A4,pc), r1 ; [000000F0] = h'C00C6410

.text:0000004A cmp/eq r1, r6

.text:0000004C bt loc_80

.text:0000004E rts

.text:00000050 nop

.text:00000060

.text:00000060 mov.l @r7, r1 ;read memory implementation

.text:00000062 mov #0, r0

.text:00000064 mov.l @r1, r1 ;read memory

.text:00000066 rts

.text:00000068 mov.l r1, @r7 ;write read value to result

Similarily to Issue #8, access to /dev/dbgio device poses serious security risk to the

security of a target OS. Attackers, might use its functionality to gain full access to the virtual

memory space of a target OS. This in particular, allows for the:

 access to restricted I/O functionality such as the one implemented by the GSECHAL
device driver,

 privilege elevation to user root and chroot sandbox escape,

 execution of attacker's code in the kernel context.

APPENDIX A

c:_PROJECTS\DTV\>shell

NBOX HDTV client for ITI 5800S, ITI 5800SX, ITI 2850ST, ITI2849ST

(c) SECURITY EXPLORATIONS 2011 poland

box> go 1

box> ps

box> root

uid=0(root) gid=0(root)

box> ps

UID PID CMD

root 1 init

root 2 [ksoftirqd/0]

root 3 [events/0]

root 4 [khelper]

root 9 [kthread]

root 19 [kblockd/0]

root 27 [khubd]

root 59 [pdflush]

root 60 [pdflush]

root 62 [aio/0]

root 61 [kswapd0]

root 66 [mtdblockd]

root 78 init

root 79 /bin/sh /etc/init.d/rcS

root 82 [jffs2_gcd_mtd2]

root 98 [STFDMA_ClbckMgr]

root 103 [stpti4_IntTask]

root 104 [stpti4_EvtTask]

root 121 [EVTCOLL0]

root 122 [EVTCOLL1]

root 123 [PESCOLL0]

root 124 [PESCOLL1]

root 125 [SECCOLL0]

root 126 [SECCOLL1]

root 133 [hdmi_isr_task]

root 134 [hdmi_ctrl_task]

root 147 [EMBXSHM-NewPort]

root 148 [EMBXSHM-PortClo]

root 171 [video_mp2_decod]

root 174 [HostRec40800000]

root 175 [PreprocTask[0]]

root 176 [h264_decoder]

root 192 [audiodecoder]

root 211 [ActivityTask]

root 214 [ttxt]

root 223 [ifp_WorkTask]

root 267 /bin/sh /root/dhcpc.sh

root 270 /sbin/udhcpc -f -s /etc/udhcpc.script -p /tmp/udhcpc.pid

-z /tmp/udhcpc.opt

root 282 /bin/sh /root/netd.sh

root 283 /root/root.elf

uapp01 285 /root/main.elf

root 287 /sbin/netd_server

root 522 [leds_WorkTask]

box>

box> ls /proc/285/fd

[/proc/285/fd]

lrwxrwxrwx root root 0 -> /dev/null

lrwxrwxrwx root root 1 -> /dev/null

lrwxrwxrwx root root 2 -> /dev/null

lrwxrwxrwx root root 3 -> /proc/version

lrwxrwxrwx root root 4 -> /var/run/root_pipe_read

lrwxrwxrwx root root 5 -> /var/run/root_pipe_write

lrwxrwxrwx root root 6 -> /dev/gpio

lrwxrwxrwx root root 7 -> /dev/watchdog

lrwxrwxrwx root root 8 -> /dev/kmem

lrwxrwxrwx root root 9 -> /dev/ccore_dma0

lrwxrwxrwx root root 10 -> /dev/ccore_dma1

lrwxrwxrwx root root 11 -> /dev/ccore_dma2

lrwxrwxrwx root root 12 -> /dev/ccore_dma3

lrwxrwxrwx root root 13 -> /dev/ccore_dma_sck

lrwxrwxrwx root root 14 -> /dev/i2c-0

lrwxrwxrwx root root 15 -> /dev/input/event0

lrwxrwxrwx root root 16 -> /dev/input/event1

lrwxrwxrwx root root 17 -> /dev/input/event2

lrwxrwxrwx root root 18 -> /dev/input/event3

lrwxrwxrwx root root 19 -> /dev/adb_display

lrwxrwxrwx root root 20 -> /dev/diseqc0

lrwxrwxrwx root root 21 -> /dev/tsmerge

lrwxrwxrwx root root 22 -> /dev/dvr0

lrwxrwxrwx root root 23 -> pipe:[375]

lrwxrwxrwx root root 24 -> pipe:[375]

lrwxrwxrwx root root 25 -> pipe:[376]

lrwxrwxrwx root root 26 -> pipe:[376]

lrwxrwxrwx root root 27 -> /dev/dmx0

lrwxrwxrwx root root 28 -> /dev/dmx0

lrwxrwxrwx root root 29 -> pipe:[377]

lrwxrwxrwx root root 30 -> pipe:[377]

lrwxrwxrwx root root 31 -> pipe:[378]

lrwxrwxrwx root root 32 -> pipe:[378]

lrwxrwxrwx root root 33 -> /dev/dmx1

lrwxrwxrwx root root 34 -> /dev/dmx1

lrwxrwxrwx root root 35 -> /dev/dmx0

lrwxrwxrwx root root 36 -> /dev/dmx0

lrwxrwxrwx root root 37 -> /dev/dmx0

lrwxrwxrwx root root 38 -> /dev/dmx0

lrwxrwxrwx root root 39 -> /dev/dmx0

lrwxrwxrwx root root 40 -> /dev/dmx0

lrwxrwxrwx root root 41 -> /dev/dmx0

lrwxrwxrwx root root 42 -> /dev/dmx0

lrwxrwxrwx root root 43 -> /dev/dmx0

lrwxrwxrwx root root 44 -> /dev/dmx0

lrwxrwxrwx root root 45 -> /dev/dmx0

lrwxrwxrwx root root 46 -> /dev/dmx0

lrwxrwxrwx root root 47 -> /dev/dmx0

lrwxrwxrwx root root 48 -> /dev/dmx0

lrwxrwxrwx root root 49 -> /dev/dmx0

lrwxrwxrwx root root 50 -> /dev/dmx1

lrwxrwxrwx root root 51 -> /dev/dmx1

lrwxrwxrwx root root 52 -> /dev/dmx1

lrwxrwxrwx root root 53 -> /dev/dmx1

lrwxrwxrwx root root 54 -> /dev/dmx1

lrwxrwxrwx root root 55 -> /dev/dmx1

lrwxrwxrwx root root 56 -> /dev/dmx1

lrwxrwxrwx root root 57 -> /dev/dmx1

lrwxrwxrwx root root 58 -> /dev/dmx1

lrwxrwxrwx root root 59 -> /dev/dmx1

lrwxrwxrwx root root 60 -> /dev/dmx1

lrwxrwxrwx root root 61 -> /dev/dmx1

lrwxrwxrwx root root 62 -> /dev/dmx1

lrwxrwxrwx root root 63 -> /dev/dmx1

lrwxrwxrwx root root 64 -> /dev/dmx1

lrwxrwxrwx root root 65 -> /dev/dco_clk

lrwxrwxrwx root root 66 -> /dev/vidout

lrwxrwxrwx root root 67 -> /dev/vdisp

lrwxrwxrwx root root 68 -> /dev/avll

lrwxrwxrwx root root 69 -> /dev/hdcp

lrwxrwxrwx root root 70 -> /dev/scart

lrwxrwxrwx root root 71 -> /dev/vidmixer

lrwxrwxrwx root root 72 -> /dev/fb1

lrwxrwxrwx root root 73 -> /dev/fb0

lrwxrwxrwx root root 74 -> /dev/teletext

lrwxrwxrwx root root 75 -> socket:[388]

lrwxrwxrwx root root 76 -> pipe:[389]

lrwxrwxrwx root root 77 -> pipe:[389]

lrwxrwxrwx root root 78 -> /dev/sc0

lrwxrwxrwx root root 79 -> /dev/st231cm

lrwxrwxrwx root root 80 -> /dev/dmx0

lrwxrwxrwx root root 81 -> /dev/edid

lrwxrwxrwx root root 82 -> /opt/uapp01/var/run/netd1

lrwxrwxrwx root root 83 -> /opt/uapp01/var/run/netd2

lrwxrwxrwx root root 84 -> /opt/uapp01/var/run/netd3

lrwxrwxrwx root root 85 -> socket:[422]

lrwxrwxrwx root root 86 -> socket:[423]

lrwxrwxrwx root root 87 -> socket:[619]

lrwxrwxrwx root root 88 -> /opt/uapp01/dev/dmx0

lrwxrwxrwx root root 89 -> /opt/uapp01/dev/dmx0

lrwxrwxrwx root root 94 -> socket:[640]

REFERENCES

[1] Wikipedia entry for LinuxThreads, http://en.wikipedia.org/wiki/LinuxThreads

[2] PTHREADS(7) Man page,

http://www.kernel.org/doc/manpages/online/pages/man7/pthreads.7.html

http://en.wikipedia.org/wiki/LinuxThreads
http://www.kernel.org/doc/manpages/online/pages/man7/pthreads.7.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

