

Security Vulnerability Notice

SE-2012-01-PUBLIC

[Security vulnerabilities in Java SE, Issue 54]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

VULNERABILITY DETAILS

Security Explorations discovered a security vulnerability in Java SE Platform, Standard
Edition. A table below, presents its technical summary:

ISSUE

TECHNICAL DETAILS

54 origin java.lang.invoke.MethodHandles

cause The lack of security checks in a family of MethodHandle resolving methods

impact Access to protected members of arbitrary classes

type partial security bypass vulnerability

Issue 54 stems from the fact that certain MethodHandle lookup methods

(resolveVirtual, resolveStatic, etc.) of java.lang.invoke.MethodHandles

class do not invoke the checkSecurityManager method during target class member

resolution process. This is clearly visible when arbitrary find and resolve methods

corresponding to a given MethodHandle lookup operation are compared as in the case of

findVirtual and resolveVirtual methods denoted below:

 public MethodHandle findVirtual(Class class1, String s, MethodType

methodtype) throws NoSuchMethodException, IllegalAccessException {

 MemberName membername = resolveOrFail(class1, s, methodtype, false);

 checkSecurityManager(class1, membername); this call is missing below

 Class class2 = findBoundCallerClass(membername);

 return accessVirtual(class1, membername, class2);

 }

 private MethodHandle resolveVirtual(Class class1, String s, MethodType

methodtype) throws NoSuchMethodException, IllegalAccessException {

 MemberName membername = resolveOrFail(class1, s, methodtype, false);

 return accessVirtual(class1, membername, lookupClass);

 }

The above indicates the lack of a security check in resolveVirtual method. Although,

this method is private and is not invoked by any publicly available API method, it may be still

called by the Java VM during Class file parsing. This is in particular done whenever

MethodHandle entries are encountered in a target Class file’s ConstantPool.

For the purpose of our Proof of Concept code we generate a specially crafted MyCL class file

containing a MethodHandle reference to defineClass method of

java.lang.ClassLoader class in its ConstantPool. A dump of the resulting file is

provided below:

public class MyCL extends java.lang.ClassLoader

 SourceFile: "MyCL.java"

 minor version: 0

 major version: 51

 flags: ACC_PUBLIC, ACC_SUPER

Constant pool:

 #1 = Methodref #5.#16 // java/lang/ClassLoader."<init>":()V

 #2 = Methodref #5.#17 //

java/lang/ClassLoader.defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionD

omain;)Ljava/lang/Class;

 #3 = String #10 // dummy

 #4 = Class #18 // MyCL

 #5 = Class #19 // java/lang/ClassLoader

 #6 = Utf8 <init>

 #7 = Utf8 ()V

 #8 = Utf8 Code

 #9 = Utf8 LineNumberTable

 #10 = Utf8 dummy

 #11 = Utf8

(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)V

 #12 = Utf8 get_defineClass_mh

 #13 = Utf8 ()Ljava/lang/Object;

 #14 = Utf8 SourceFile

 #15 = Utf8 MyCL.java

 #16 = NameAndType #6:#7 // "<init>":()V

 #17 = NameAndType #20:#21 //

defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Clas

s;

 #18 = Utf8 MyCL

 #19 = Utf8 java/lang/ClassLoader

 #20 = Utf8 defineClass

 #21 = Utf8

(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class;

 #22 = MethodHandle #5:#2 // invokevirtual

java/lang/ClassLoader.defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionD

omain;)Ljava/lang/Class;

ConstantPool at index 22 contains the MethodHandle entry which will be successfully

resolved with the use of the resolveVirtual method during Class file parsing. This can

be accomplished due to the missing security checks in the abovementioned method.

IMPACT
Described Issue 54 is not sufficient to implement a functional and successful attack code in
the environment of Java SE 7. Security Explorations discovered another issue (number 55)
affecting Oracle’s Java SE 7 that allows to do this.

Issues 54 and 55, when combined together can be used to successfully achieve a complete
Java security sandbox bypass in a target system. Proof of Concept code illustrating the
impact of both vulnerabilities has been successfully tested in the environment of Java SE 7
Update 15 and Java SE 7 Update 17.

VENDOR’S RESPONSE
On Feb 25 2013, Security Explorations sent a vulnerability notice to Oracle containing
detailed information about two discovered vulnerabilities (Issues 54 and 55). Along with
that, the company was also provided with source and binary codes for a Proof of Concept
codes illustrating the impact of both security issues found.

On Feb 27, 2013 Oracle provided the results of its assessment and informed that Issue 54
was not treated as a vulnerability as it demonstrated the "allowed behavior". Company’s
denial of the issue as a security bug was made on the following basis:

"obtaining a method handle for a protected method from a superclass is allowed behavior"

Security Explorations didn’t agree with the above assessment and on the same day provided
its counterarguments to Oracle. We indicated that Issue 54 abused the missing security

manager check in resolveVirtual method in order to gain access to method handle

objects of certain security sensitive classes such as Class Loaders. In our Proof of Concept

code, we were able to access Method Handle object pointing to defineClass method of

java.lang.ClassLoader class.

Oracle claimed that accessing a protected member such as a Method Handle from a
superclass is an allowed behavior. This is not true as demonstrated by the code below:

public class MyCL extends ClassLoader {

 public static void test() {

 try {

 MethodHandles.Lookup l=MethodHandles.lookup();

 System.out.println("lookup: "+l.lookupClass()+"/"+l.lookupModes());

 Class ctab[]=new Class[5];

 ctab[0]=java.lang.String.class;

 ctab[1]=(new byte[0]).getClass();

 ctab[2]=Integer.TYPE;

 ctab[3]=Integer.TYPE;

 ctab[4]=java.security.ProtectionDomain.class;

 MethodType desc=MethodType.methodType(java.lang.Class.class,ctab);

 MethodHandle

mh=l.findVirtual(java.lang.ClassLoader.class,"defineClass",desc);

 System.out.println(mh);

 } catch(Throwable t) {

 t.printStackTrace();

 }

 }

}

The above code does exactly the same thing as a code sequence we use in our Proof of
Concept code. The only difference is in the method that gets called at the time of Method

Handle resolution (here findVirtual, in our PoC this is resolveVirtual).

The above code tries to access a protected member (defineClass Method Handle) from

the subclass of the class that declares that member. However, contrary to Oracle’s claim

such an access is not allowed. It is blocked by the checkSecurityManager method:

Security manager = sun.plugin2.applet.AWTAppletSecurityManager@c3cae5

lookup: class MyCL/15

java.security.AccessControlException: access denied

("java.lang.RuntimePermission" "accessDeclaredMembers")

 at java.security.AccessControlContext.checkPermission(Unknown Source)
 at java.security.AccessController.checkPermission(Unknown Source)

 at java.lang.SecurityManager.checkPermission(Unknown Source)

 at java.lang.SecurityManager.checkMemberAccess(Unknown Source)

 at java.lang.invoke.MethodHandles$Lookup.checkSecurityManager(Unknown

Source)

 at java.lang.invoke.MethodHandles$Lookup.findVirtual(Unknown Source)

 at MyCL.test(MyCL.java:39)

 at BlackBox.<init>(BlackBox.java:31)

 ...

The above result is consistent with Java SE documentation [1] describing Security Manager
interactions conducted at the time of member lookup operations:

 "If a security manager is present, member lookups are subject to additional checks."

 "If the retrieved member is not public, smgr.checkMemberAccess(defc,Member.DECLARED)
is called."

We also indicated to Oracle that even partially initialized Class Loader instances are not
allowed in Java SE and that core Reflection API does not allow access to protected members
of system classes, unless access to declared members is granted.

On 05 Mar 2013, Oracle informed us that it was continuing to evaluate Security Explorations'
arguments regarding Issue 54. The company provided the following background for its
analysis:

“The rules controlling runtime reflection are different from the resolution of a method handle
in a class file constant pool (see [2], [3] for details). The two methods of obtaining method
handles (via constant pool and reflection) have different models for when access checks are
applied. For the constant pool case, the JVM applies the access control checks that are
consistent for all forms of constant pool resolution. If a valid class file can contain an
invokespecial (or other invoke instruction) for a method, then a method handle for that
method is allowed in the constant pool. In your report #54, there is an invokespecial for:

Method
java/lang/ClassLoader.defineClass:(Ljava/lang/String;[BIILjava/security/ProtectionDomain;)L
java/lang/Class;

in MyCL.class, and thus a method handle for the same method is allowed. If this method
were package private or private, the modified class would throw an
IncompatibleClassChangeError at load time. While the two systems parallel one another,
their behavior is different.”

What’s important to note is that the above background includes arguments for the “allowed
behavior” again. This time this is however done in a context of JVM specification and
Constant Pool resolution.

On Mar 11 2013, we asked Oracle about the final evaluation of Issue 54. In a response, the
company informed us that it was still continuing to evaluate it.

As of Mar 18, 2013 we have no information that the company treats the issue as a security
vulnerability.

FINAL WORDS
Security Explorations believes that 3 weeks (from Feb 25 to Mar 18) constitutes enough time
for a major software vendor to be able to deliver a final confirmation or denial of a reported
security issue. This especially concerns a vendor that has been a subject of a considerable
criticism regarding competent and prompt handling of security vulnerabilities in its software.

Security Explorations does not agree with Oracle’s arguments and reasoning provided so far
with respect to Issue 54. A general rule in security is that same circumstances / constraints
should lead to consistent (same, not different) security access related decisions. In case of
Issue 54, resolving protected members of superclasses should be either always allowed or
denied for all code paths available to untrusted code (irrespective whether a member is

resolved with the use of a public API or internally by the Java VM operating on behalf of an
untrusted code).

Security Explorations is not aware of any other way to obtain a Method Handle to the

protected member of java.lang.ClassLoader class that would not be the outcome of a

security vulnerability.

Security Explorations failed to launch a successful Java security sandbox bypass scenario

upon access to defineClass Method Handle obtained with the use of a different

vulnerability (Issue 57). That contradicts the claim that Issue 54 is the “allowed behavior”. It
also contradicts an indirect conclusion that Issue 55 is alone sufficient to launch the attack
demonstrated to the company.

Our tests indicate that Issue 55 can be combined with a Method Handle object obtained with
the use of Issue 54 only.

If Oracle sticks to the “allowed behavior” scenario, in order to maintain proper consistency
of security checks in Java SE, the company should relax some of security checks present in
Reflection API code and apply proper changes to Java SE documentation [1] as well. The
alternative is to admit to the fault regarding the evaluation of Issue 54 and begin to treat it
as a security vulnerability being the result of inconsistent security design of new Reflection
API (no security checks enforced by JVM specification during Method Handles resolution
[2][3]).

REFERENCES
[1] Class MethodHandles.Lookup, Security manager interactions
http://docs.oracle.com/javase/7/docs/api/java/lang/invoke/MethodHand

les.Lookup.html#secmgr

[2] The Java Virtual Machine Specification, The CONSTANT_MethodHandle_info Structure
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-

4.4.8

[3] The Java Virtual Machine Specification, Method Type and Method Handle Resolution
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html#jvms-

5.4.3.5

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

