

#### CORE COMPETENCES AND APPROACH TO SECURITY

### INTRODUCTION

#### PRESENTATION GOAL

#### > Present Security Explorations

- > Our competences in the area of software security
  - experience
  - core skills
  - achievements
  - services
- > Our approach to security
  - methodology and processes



CORE COMPETENCES AND APPROACH TO SECURITY

ABOUT

- Security and vulnerability research lab of AG Security Research company from Poznań, Poland
- Various services in the area of security and vulnerability research
  - > Breaking security of things and analyzing software for security defects
  - > New attack and vulnerability exploitation techniques
- > Quality, unbiased, vendor-free and independent security and vulnerability research



#### PEOPLE

#### > Adam Gowdiak

- Company founder and CEO
- M. Sc. in Computer Science from Poznan University of Technology (1994-1999)
- > Poznan Supercomputing and Networking Center (1996-2005)
  - Government research facility
  - Security engineer and systems analyst
- > LSD Research Group (1996-2004)
  - Non-profit organization
  - Co-founder, principal researcher
- Sun Microsystems Laboratories (2005-2008)
  - Commercial research laboratory
  - Senior Staff Engineer
  - Hired by Whitfield Diffie (Sun CSO, the inventor of public key cryptography)



#### OUR EXPERIENCE

#### > 25+ years of contribution to the security research field

- > Security vulnerabilities and exploitation techniques
- > Research papers and conference presentations
- > Bug hunting and exploit code development for various operating systems and architectures
  - > Windows, Linux, Java, AIX, IRIX, Solaris, Nokia S40 OS
  - > X86, MIPS, ARM, PowerPC / POWER, Sparc, SH4
- > Reverse engineering
  - > Security analysis of binary programs
  - > Static and runtime program analysis
  - Custom tools
- > Penetration testing



#### OUR PAST ACHIEVEMENTS

#### > Java VM security

- > Research paper from 2002 (Sun, Netscape, Microsoft)
  - "Java Security Vulnerabilities and their exploitation techniques" "a 50-page paper that exposed implementation vulnerabilities in Java – far better than anything produced by the l0pht", Chris Wysopal, L0pht member
- > 24 bugs in J2SE from 2005/2006
  - Java RMI weakness, Java Reflection bug class
- > Mobile Java (J2ME) security
  - Two bytecode verifier issues from 2004
    - 250 million handsets affected
  - Other Java based software
    - > Apple Quicktime (10+ bugs)
    - > Local and remote Solaris OS issues



#### OUR PAST ACHIEVEMENTS (2)

#### > Windows MSRPC DCOM

- Critical security vulnerability in all available Microsoft Windows operating systems (2000 / XP / 2003)
- > Described in MS03-026 security bulletin
- Remote attackers could get unauthenticated access to remote Windows systems with administrative privileges
- > Bug exploited by the Blaster worm
  - > 20+ millions of systems infected
- Focused security researchers on MS Windows RPC area
  - > years later bugs were still found in MSRPC



CORE SKILLS

#### > Strong analytical skills

- > Ability to discover issues missed by big software vendors and their security teams in software security assurance / development lifecycle
  - Vulnerabilities in products already deployed to the market
  - Broken patches
  - Hardware issues
    - STi7100 / STi7111 processors
- > Ability to discover information about a target from little scratches (puzzles as in our company logo)
  - > SLIM Core instruction set reverse engineering from the format of a single SLIM Core instruction (JMP)



#### CORE SKILLS (2)

- Systemic and in-depth security analysis
  - > SE-2011-01 SAT TV research
    - CSS bug in web application code
      - 50 bytes of arbitrary HTML code
    - JavaScript code execution
    - Java code loading and execution
    - Java Virtual Machine sandbox escape
    - Native memory access
    - Native code execution
    - Kernel level code execution
    - STi7111 SLIM Core code execution
    - CW extraction



#### CORE SKILLS (3)

#### > Creativity

- > Custom tools for static / dynamic code analysis
  - SH4 emulator with Crypto Core I/O proxy for set-top-box boot loader decryption
  - SLIM Core tracer
- > Novel exploitation techniques
  - Minor Java bugs chaining for complete sandbox compromise
  - Type confusion for memory access or privilege elevation
  - JVM internals for native code execution
  - Java sandbox escape for Oracle DB privilege elevation
  - ...



CORE SKILLS (4)

- > 25+ years experience in breaking security of closed software
  - > Strong reverse engineering skills
- > Ability to break security of targets not known prior to the engagement
  - > Hacking from scratch
    - MS PlayReady (no previous knowledge of DRM, A/V streaming, ECC crypto, MPEG-4 spec)



#### CUTTING EDGE SECURITY RESEARCH

#### > We were the first to break security of:

- > Java for mobile phones (J2ME) with MIDP 2.0 security features aimed at protecting users and devices from malicious software
- > Nokia Series 40 Platform devices
- digital satellite TV set-top-boxes running Java MHP middleware from Advanced Digital Broadcast
- > secure cryptographic processors from STMicroelectronics used to secure HDTV content broadcasted by various SAT TV operators around the world (STi710x and STi7111 DVB chipsets)
- > Java based cloud hosting environments coming from Oracle and Google (Oracle Java Cloud Service and Google App Engine for Java),



CUTTING EDGE SECURITY RESEARCH (CONT.)

- > We were also the first to:
  - > discover and implement an attack against a mobile 3G phone allowing for a remote deployment and execution of a malicious Java application (i.e. a backdoor, malware or virus),
  - > demonstrate novel techniques for both a setup and exploitation of type confusion vulnerabilities in Java environments,
  - > demonstrate novel techniques for a security compromise of Oracle Database with the use of Java security vulnerabilities.



#### **BUGS STATISTICS**

| Vendor          | Target                                    | #Issues |
|-----------------|-------------------------------------------|---------|
| ADB             | Set-top-box SW                            | 22      |
| APPLE           | Apple Quicktime for Java                  | 2       |
| GOOGLE          | Google App Engine                         | 41      |
| IBM             | Java SE                                   | 26      |
| ΝΟΚΙΑ           | Series 40 mobile phones                   | 14      |
| ORACLE          | Java SE                                   | 44      |
| ORACLE          | Oracle Java Cloud Service                 | 30      |
| ORACLE          | Oracle Database JVM                       | 22      |
| ST              | STi7100 / STI7111 DVB chipsets            | 4       |
| ORACLE          | Java Card                                 | 31      |
| GEMALTO         | GemXplore 3G / 3G USimera Prime SIM cards | 3       |
| CANAL+          | VOD platform                              | 3+      |
| TELIT CINTERION | Java based modem gateways / IoT devices   | 18      |



CORE COMPETENCES AND APPROACH TO SECURITY

NAN A

1000

#### WHAT OTHERS HAVE BEEN SAYING

#### > The Register

- "We reported Gowdiak's claims earlier this month, with some incredulity. It seemed unlikely that one researcher could uncover such a litany of security flaws in such a popular platform...- but it seems our cynicism was misplaced"
- Mark Durrant of Nokia's corporate communications
  - "This requires deep technical skills. This isn't something someone in a garage is going to be able to sort out in an afternoon. He's [Gowdiak's] clearly a smart guy"
- > Undisclosed Israeli company
  - "Having personally seen and evaluated your publications as part of Security Explorations
    ... I trust you can deliver the high quality results we are looking for"
- > Undisclosed US Gov / Mil contractor
  - "I remain impressed by what the Polish brain can produce"
- > Google Security Team
  - "The VRP panel was really impressed by your research and thoroughness"
- > Telit Cinterion
  - "We are impressed by the detail and also the support you provided for our analysis"



#### COMMERCIAL SERVICES

- > Services offering focused on our best skills and experience
  - > Security evaluation of software
  - > Custom security research projects
    - Binary or source code
- > For software / hardware vendors and 3<sup>rd</sup> party companies
  - > Is software / hardware / technology we develop secure ?
  - > Is software / hardware / technology our company use secure ?
- > For GOV / MIL sector
  - > Offensive capabilities development
  - > Intelligence acquisition
- For financial, telecommunicationon and transportation industries
  - Java Card evaluation
- Competitive and flexible pricing



MYTHS

- > Hackers go after Oracle, Microsoft, Apple and others
- > Proprietary systems are secure
  - Secret, difficult to reverse engineer and hack (security through obscurity)
- > EULA and shrink wrap licenses are sufficient to stop any hacking attempts
- Competences in HW security space are reflected in SW security space



HOW SECURITY RESEARCHERS CHOOSE THEIR TARGETS ?

- > Challenge
- > Novelty of the research
- > Impact of potential discovery
  - > Major market player
  - > Large number of users



COMMON APPROACH

- No need to invest in security as long as no problems arise
  - No problems with security so far no need to waste money on security
- > Security as an after-thought thing
  - > we'll deal with security later
- > Shallow security product reviews
  - > Design and architecture
  - > Functionality testing instead of security testing



COMMON IMPLICATIONS

#### > Security bugs are expensive

- > NIST estimates that the costs of fixing a bug after product release are 30x higher than if it was fixed during coding / testing phases
- > Even higher costs in the mobile / hardware world
  - The cost of patch deployment into millions of devices
  - Not so clear who should pay these costs
- > Development resource put into bug fixing
- > Security bugs need to be fixed



#### COMMON IMPLICATIONS (2)

- > Bad PR / media headlines
  - > Security is a hot topic these days
  - > Not all medias pay attention to the details
    - Sensation in the first place
- > Potential lost of credibility and clients' trust
  - Some big organizations (gov, mil, network operators) do pay attention to security



REAL LIFE IMPLICATIONS (ORACLE)

- > Apple, Google, Microsoft and Mozilla blocked Java in their web browsers
- > US Department of Homeland Security warned users about Java security risks
- > Certain financial institutions decided to move away from client side Java (Applets)
- > US Federal Trade Commission's investigation against Oracle over deceptive Java security updates



REAL LIFE IMPLICATIONS (STMICROELECTRONICS)

- ADB / Platform N choosing BCM chipsets for the set-top-boxes of a new, merger company (NC+) following our ST vulnerabilities disclosure
- > 1400 layoffs and shutting down of the whole ST set-top-box business in 2016



#### METHODOLOGY

- > Approach a given target from an attacker's point of view
  - > Focus on untrusted user input
    - Attackers can influence system's behavior via malicious, specially crafted input data
- > The difference
  - > Attacker needs to find one bug
  - > Security evaluator needs to find all of them



THE PROCESS

- > Learning as much as possible about the target of a security evaluation
  - > Technical documentation
  - > Source / binary code analysis
  - > Playing with the target
- Create threat model and identify the attack surface
- > Select potential weak points



#### THE PROCESS (CONT.)

#### > Develop and verify attack scenarios

- > Detailed source code review
- > Proof of concept codes
- > Custom tools
- > Refinement phase
  - > Change of assumptions / requirements

#### > Final report



#### THREAT MODEL AND ATTACK SURFACE

- Identification of components directly exposed to attackers
  - Components that receive or process data from untrusted sources
    - i.e. WWW server, SIP server, SMS parser, JPEG parser, ...
- > Identification of components indirectly exposed to attackers
  - Components that receive untrusted data from other components
    - Web browser, image parsing library, ...
- > Identification of privileged components



THREAT MODEL AND ATTACK SURFACE (2)

- > Identification of authentication and authorization mechanisms implemented
  - > How access to sensitive resources is implemented
  - > Which components implement it
- > Enumeration of components interaction
  - > Information flow in the system
  - > Mutual trust
  - > Communication mechanisms used



THREAT MODEL AND ATTACK SURFACE (3)

- > Identification of requirements to break security of a given component
  - > Start with minimal security assumption
    - Components directly exposed to attackers
    - Components without authentication / authorization
  - > Follow information flow in the system
    - Components processing attacker's data
  - > Refine security assumption
    - Assumption of a component compromise
  - > Repeat the process



#### ATTACK SCENARIOS

- Attack scenarios are developed with respect to the identified requirements for breaking security of a given component
  - > Feasibility of attacks verified with the use of source code review
    - Can the attack be launched ?
    - What input data needs to be used ?
  - Proof of concept codes for ideas / attacks verification
  - > Custom tools for speed and automation



#### SOURCE CODE REVIEW

- Conducted for components identified by a threat model
- > Hunt for design and implementation bugs
  - > Known classes of vulnerabilities
    - Memory corruption vulnerabilities
    - Injection vulnerabilities
    - Path traversal
    - Race condition
    - ...
  - > Manual, line by line code analysis
    - Focus on untrusted user input, its processing and propagation into other components
  - Discovery of new attacks



### FINAL

Q & A

### **THANK YOU**

#### contact@security-explorations.com



CORE COMPETENCES AND APPROACH TO SECURITY

122A