

Security Vulnerability Notice

SE-2012-01-ORACLE-14

[Security vulnerabilities in Java SE, Issue 69#2]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered that Issue 69 [1] reported to Oracle in Jul 2013 was
improperly fixed. According to the company, the vulnerability was addressed by a
backported (from JDK 8) implementation of the affected component (method handles API)
in JDK 7 Update 40 from Sep 2013. Below, technical details of the flawed fix implementation
are provided.

Issue 69 had its origin in insecure implementation of new Reflection API. When Method
Handle objects were invoked across two different Class Loader namespaces, no checks were
done against the type safety of their argument types. As a result, it was possible to provide
a spoofed definition for a given argument type, which could be treated as of a completely
different type in a target Class Loader namespace.

Oracle patch for Issue 69 incorporated a check for type aliasing (spoofing). It has a form of

the checkForTypeAlias method, which is invoked for each successfully resolved

MemberName object . This is illustrated on Fig. 1.

Fig. 1 The implementation of a checkForTypeAlias method.

The checkForTypeAlias method further calls the isTypeVisible method of

sun.invoke.util.VerifyAccess class (Fig. 2). It takes two arguments, which

correspond to the type (class) of a member to check against spoofing and a lookup Class
used for its resolving.

Fig. 2 The implementation of an isTypeVisible method.

As part of a type visibility check, a call to loadersAreRelated method is made, which

verifies whether Class Loaders of the member type and a lookup class are related. The
loaders are related when one of them is a parent of the other one. In this particular case, a

Class Loader of a member type (member_CL) needs to be a parent of the lookup loader

(lookup_CL).

Fulfilling the loadersArRelated condition is thus fairly simple. It requires that the

following change is applied to our original Proof of Concept code from 2013 (Vuln69.java

file):

Original code sequence:

 URLClassLoader cl2=URLClassLoader.newInstance(utab,null);

New code sequence enforcing the loadersArRelated condition:

 URLClassLoader cl2=URLClassLoader.newInstance(utab,cl1);

There is however one more obstacle that needs to be overcome in order to achieve the type
spoofing condition from our original POC code.

When a request to load Class A is initiated by the lookup_CL (from Class Loader 2

namespace), its loading is delegated to the parent loader (member_CL). As a result,

requested class definition is provided from Class Loader 1 namespace. However, successful

type spoofing requires that this definition comes from a lookup_CL (Class Loader 2

namespace). This implicates the use of a custom HTTP server that enforces the 404 Not
Found error, when an attempt to load Class A from Class Loader 1 namespace occurs for the

first time. This is illustrated on Fig. 3. As a result, ClassNotFoundException is thrown by

loadClass method of the parent loader and Class loading proceeds with the use of a

lookup_CL (Class Loader 2 namespace).

Fig. 3 The enforcement of a class spoofing condition (Class A loading from Class Loader 2 namespace).

This tricked Class loading process is illustrated by the following custom HTTP server output:

requesting file: /Issue69/index.html

requesting file: /Issue69/BlackBox.class

requesting file: /Issue69/Vuln69.class

requesting file: /Issue69/A.class

- enforcing 404 (Not Found)

requesting file: /Issue69//data/A.class

requesting file: /Issue69/Helper.class

requesting file: /Issue69//data/Helper.class

requesting file: /Issue69/Exploit.class

requesting file: /Issue69//data/Exploit.class

requesting file: /Issue69/A.class

requesting file: /Issue69/MyPermissions.class

requesting file: /Issue69//data/MyPermissions.class

requesting file: /Issue69/MyAccessControlContext.class

requesting file: /Issue69//data/MyAccessControlContext.class

requesting file: /Issue69/MyProtectionDomain.class

requesting file: /Issue69//data/MyProtectionDomain.class

requesting file: /Issue69/BlackBox.class

We implemented a Proof of Concept code that illustrates the impact of the broken fix

described above. It has been successfully tested in the environment of Java SE 7 Update 97,

Java SE 8 Update 74 and Java SE 9 Early Access Build 108. In all cases, a complete Java

security sandbox escape could be achieved.

At the end, it's worth to note that Issue 69 (CVE-2013-5838) was also improperly evaluated

by Oracle in terms of a vulnerability impact. Oracle Critical Patch Update from Oct 2013

indicated that Issue 69 could "be exploited only through sandboxed Java Web Start

applications and sandboxed Java applets" (Fig. 4).

Fig. 4 False statement regarding Issue 69 impact.

This is not true. We proved that Issue 69 could be successfully exploited in a server

environment as well such as Google App Engine for Java [2].

REFERENCES

[1] SE-2012-01-ORACLE-13, Issue 69

http://www.security-explorations.com/materials/SE-2012-01-ORACLE-

13.pdf

[2] SE-2014-02, Issue21 (POC23)

http://www.security-explorations.com/materials/se-2014-02-32-34.zip

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

